movielens.py 7.2 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14 15 16
"""
Movielens 1-M dataset.

Q
qijun 已提交
17 18 19
Movielens 1-M dataset contains 1 million ratings from 6000 users on 4000
movies, which was collected by GroupLens Research. This module will download
Movielens 1-M dataset from 
Q
qijun 已提交
20 21
http://files.grouplens.org/datasets/movielens/ml-1m.zip and parse training
set and test set into paddle reader creators.
Q
qijun 已提交
22

Y
Yu Yang 已提交
23
"""
D
dangqingqing 已提交
24

Y
Yu Yang 已提交
25
import zipfile
26
import paddle.dataset.common
Y
Yu Yang 已提交
27 28 29 30
import re
import random
import functools

Y
Refine  
Yu Yang 已提交
31 32
__all__ = [
    'train', 'test', 'get_movie_title_dict', 'max_movie_id', 'max_user_id',
Y
Your Name 已提交
33 34
    'age_table', 'movie_categories', 'max_job_id', 'user_info', 'movie_info',
    'convert'
Y
Refine  
Yu Yang 已提交
35 36 37
]

age_table = [1, 18, 25, 35, 45, 50, 56]
Y
Yu Yang 已提交
38

Y
Yancey1989 已提交
39 40 41
URL = 'http://files.grouplens.org/datasets/movielens/ml-1m.zip'
MD5 = 'c4d9eecfca2ab87c1945afe126590906'

Y
Yu Yang 已提交
42 43

class MovieInfo(object):
Q
qijun 已提交
44 45 46
    """
    Movie id, title and categories information are stored in MovieInfo.
    """
Q
qijun 已提交
47

Y
Yu Yang 已提交
48 49 50 51 52 53
    def __init__(self, index, categories, title):
        self.index = int(index)
        self.categories = categories
        self.title = title

    def value(self):
Q
qijun 已提交
54
        """
Q
qijun 已提交
55
        Get information from a movie.
Q
qijun 已提交
56
        """
Y
Yu Yang 已提交
57 58 59 60 61
        return [
            self.index, [CATEGORIES_DICT[c] for c in self.categories],
            [MOVIE_TITLE_DICT[w.lower()] for w in self.title.split()]
        ]

Y
Yu Yang 已提交
62 63 64 65 66 67 68
    def __str__(self):
        return "<MovieInfo id(%d), title(%s), categories(%s)>" % (
            self.index, self.title, self.categories)

    def __repr__(self):
        return self.__str__()

Y
Yu Yang 已提交
69 70

class UserInfo(object):
Q
qijun 已提交
71 72 73
    """
    User id, gender, age, and job information are stored in UserInfo.
    """
Q
qijun 已提交
74

Y
Yu Yang 已提交
75 76 77
    def __init__(self, index, gender, age, job_id):
        self.index = int(index)
        self.is_male = gender == 'M'
Y
Refine  
Yu Yang 已提交
78
        self.age = age_table.index(int(age))
Y
Yu Yang 已提交
79 80 81
        self.job_id = int(job_id)

    def value(self):
Q
qijun 已提交
82
        """
Q
qijun 已提交
83
        Get information from a user.
Q
qijun 已提交
84
        """
Y
Yu Yang 已提交
85 86
        return [self.index, 0 if self.is_male else 1, self.age, self.job_id]

Y
Yu Yang 已提交
87 88 89 90 91 92 93 94
    def __str__(self):
        return "<UserInfo id(%d), gender(%s), age(%d), job(%d)>" % (
            self.index, "M"
            if self.is_male else "F", age_table[self.age], self.job_id)

    def __repr__(self):
        return str(self)

Y
Yu Yang 已提交
95 96 97 98 99 100 101 102

MOVIE_INFO = None
MOVIE_TITLE_DICT = None
CATEGORIES_DICT = None
USER_INFO = None


def __initialize_meta_info__():
103
    fn = paddle.dataset.common.download(URL, "movielens", MD5)
Y
Yu Yang 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    global MOVIE_INFO
    if MOVIE_INFO is None:
        pattern = re.compile(r'^(.*)\((\d+)\)$')
        with zipfile.ZipFile(file=fn) as package:
            for info in package.infolist():
                assert isinstance(info, zipfile.ZipInfo)
                MOVIE_INFO = dict()
                title_word_set = set()
                categories_set = set()
                with package.open('ml-1m/movies.dat') as movie_file:
                    for i, line in enumerate(movie_file):
                        movie_id, title, categories = line.strip().split('::')
                        categories = categories.split('|')
                        for c in categories:
                            categories_set.add(c)
                        title = pattern.match(title).group(1)
                        MOVIE_INFO[int(movie_id)] = MovieInfo(
                            index=movie_id, categories=categories, title=title)
                        for w in title.split():
                            title_word_set.add(w.lower())

                global MOVIE_TITLE_DICT
                MOVIE_TITLE_DICT = dict()
                for i, w in enumerate(title_word_set):
                    MOVIE_TITLE_DICT[w] = i

                global CATEGORIES_DICT
                CATEGORIES_DICT = dict()
                for i, c in enumerate(categories_set):
                    CATEGORIES_DICT[c] = i

                global USER_INFO
                USER_INFO = dict()
                with package.open('ml-1m/users.dat') as user_file:
                    for line in user_file:
                        uid, gender, age, job, _ = line.strip().split("::")
                        USER_INFO[int(uid)] = UserInfo(
                            index=uid, gender=gender, age=age, job_id=job)
    return fn


def __reader__(rand_seed=0, test_ratio=0.1, is_test=False):
    fn = __initialize_meta_info__()
    rand = random.Random(x=rand_seed)
    with zipfile.ZipFile(file=fn) as package:
        with package.open('ml-1m/ratings.dat') as rating:
            for line in rating:
                if (rand.random() < test_ratio) == is_test:
                    uid, mov_id, rating, _ = line.strip().split("::")
                    uid = int(uid)
                    mov_id = int(mov_id)
                    rating = float(rating) * 2 - 5.0

                    mov = MOVIE_INFO[mov_id]
                    usr = USER_INFO[uid]
                    yield usr.value() + mov.value() + [[rating]]


def __reader_creator__(**kwargs):
    return lambda: __reader__(**kwargs)


Y
Refine  
Yu Yang 已提交
166 167
train = functools.partial(__reader_creator__, is_test=False)
test = functools.partial(__reader_creator__, is_test=True)
Y
Yu Yang 已提交
168 169


Y
Yu Yang 已提交
170
def get_movie_title_dict():
Q
qijun 已提交
171 172 173
    """
    Get movie title dictionary.
    """
Y
Yu Yang 已提交
174 175 176 177
    __initialize_meta_info__()
    return MOVIE_TITLE_DICT


Y
Refine  
Yu Yang 已提交
178 179 180 181 182 183 184 185
def __max_index_info__(a, b):
    if a.index > b.index:
        return a
    else:
        return b


def max_movie_id():
Q
qijun 已提交
186 187 188
    """
    Get the maximum value of movie id.
    """
Y
Refine  
Yu Yang 已提交
189 190 191 192 193
    __initialize_meta_info__()
    return reduce(__max_index_info__, MOVIE_INFO.viewvalues()).index


def max_user_id():
Q
qijun 已提交
194 195 196
    """
    Get the maximum value of user id.
    """
Y
Refine  
Yu Yang 已提交
197 198 199 200
    __initialize_meta_info__()
    return reduce(__max_index_info__, USER_INFO.viewvalues()).index


Y
Yu Yang 已提交
201 202 203 204 205 206 207 208
def __max_job_id_impl__(a, b):
    if a.job_id > b.job_id:
        return a
    else:
        return b


def max_job_id():
Q
qijun 已提交
209 210 211
    """
    Get the maximum value of job id.
    """
Y
Yu Yang 已提交
212 213 214 215 216
    __initialize_meta_info__()
    return reduce(__max_job_id_impl__, USER_INFO.viewvalues()).job_id


def movie_categories():
Q
qijun 已提交
217 218 219
    """
    Get movie categoriges dictionary.
    """
Y
Yu Yang 已提交
220 221 222 223
    __initialize_meta_info__()
    return CATEGORIES_DICT


Y
Yu Yang 已提交
224
def user_info():
Q
qijun 已提交
225 226 227
    """
    Get user info dictionary.
    """
Y
Yu Yang 已提交
228 229 230 231 232
    __initialize_meta_info__()
    return USER_INFO


def movie_info():
Q
qijun 已提交
233 234 235
    """
    Get movie info dictionary.
    """
Y
Yu Yang 已提交
236 237 238 239
    __initialize_meta_info__()
    return MOVIE_INFO


Y
Yu Yang 已提交
240
def unittest():
Y
Refine  
Yu Yang 已提交
241
    for train_count, _ in enumerate(train()()):
Y
Yu Yang 已提交
242
        pass
Y
Refine  
Yu Yang 已提交
243
    for test_count, _ in enumerate(test()()):
Y
Yu Yang 已提交
244 245 246 247 248
        pass

    print train_count, test_count


249
def fetch():
250
    paddle.dataset.common.download(URL, "movielens", MD5)
R
root 已提交
251 252 253 254 255 256


def convert(path):
    """
    Converts dataset to recordio format
    """
257 258
    paddle.dataset.common.convert(path, train(), 1000, "movielens_train")
    paddle.dataset.common.convert(path, test(), 1000, "movielens_test")
Y
Yancey1989 已提交
259 260


Y
Yu Yang 已提交
261 262
if __name__ == '__main__':
    unittest()