all_reduce.cc 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifdef PADDLE_WITH_NCCL

#include "paddle/fluid/imperative/all_reduce.h"

#include <string>
#include <utility>

#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/nccl_helper.h"
#include "paddle/fluid/string/string_helper.h"

namespace paddle {
namespace imperative {

static void AllReduce(const framework::Tensor &src, framework::Tensor *dst,
                      const ParallelStrategy &strategy, cudaStream_t stream) {
  const auto &place = src.place();
  PADDLE_ENFORCE_EQ(
      platform::is_gpu_place(place), true,
      platform::errors::Unimplemented(
          "Imperative mode does not support multi-CPU training yet."));

  const void *src_ptr = src.data<void>();

  dst->Resize(src.dims());
  auto *dst_ptr = dst->mutable_data(src.place(), src.type());

  auto nccl_dtype = platform::ToNCCLDataType(src.type());
  auto comm = static_cast<platform::CUDADeviceContext *>(
                  platform::DeviceContextPool::Instance().Get(place))
                  ->nccl_comm();

  PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclAllReduce(
      src_ptr, dst_ptr, src.numel(), nccl_dtype, ncclSum, comm, stream));
}

#if NCCL_VERSION_CODE >= 2212
static void AllReduce(const framework::SelectedRows &src,
                      framework::SelectedRows *dst,
                      const ParallelStrategy &strategy, cudaStream_t stream) {
56
  VLOG(3) << "SelectedRows AllReduce start";
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
  const auto &src_tensor = src.value();
  const auto &place = src_tensor.place();
  PADDLE_ENFORCE_EQ(
      platform::is_gpu_place(place), true,
      platform::errors::Unimplemented(
          "Imperative mode does not support multi-CPU training yet."));

  auto dtype = src_tensor.type();
  auto nccl_dtype = platform::ToNCCLDataType(dtype);
  auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
      platform::DeviceContextPool::Instance().Get(place));
  auto comm = dev_ctx->nccl_comm();

  // 1. Gather rows number from all workers. Here use ncclAllGather to do this,
  // but we can use other ways to implement is in the future
  const auto &src_rows = src.rows();
  framework::Vector<int64_t> rows_num_vector(strategy.nranks_);
  rows_num_vector[strategy.local_rank_] = static_cast<int64_t>(src_rows.size());
75
  // CUDAMutableData use CalStream
76
  auto *gpu_rows_num_ptr = rows_num_vector.CUDAMutableData(place);
77
  if (stream != dev_ctx->stream()) dev_ctx->Wait();
78 79 80 81 82 83 84 85 86 87 88 89 90 91
  PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclAllGather(
      gpu_rows_num_ptr + strategy.local_rank_, gpu_rows_num_ptr, 1, ncclInt64,
      comm, stream));

  if (stream != dev_ctx->stream()) {
    PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamSynchronize(stream));
  }

  const auto *cpu_rows_num_ptr = rows_num_vector.data();
  auto rows_num =
      std::accumulate(cpu_rows_num_ptr, cpu_rows_num_ptr + strategy.nranks_,
                      static_cast<int64_t>(0));
  dst->set_height(src.height());

92
  VLOG(3) << "Gather rows: " << string::join_strings(rows_num_vector, ',')
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
          << ", total rows number: " << rows_num
          << ", height: " << src.height();

  auto *dst_rows = dst->mutable_rows();
  dst_rows->resize(rows_num);
  auto *dst_rows_ptr = dst_rows->CUDAMutableData(place);
  const auto *src_rows_ptr = src_rows.CUDAData(place);

  auto *dst_tensor = dst->mutable_value();
  auto dims = src_tensor.dims();
  dims[0] = rows_num;
  auto feature_size = framework::product(dims) / dims[0];
  dst_tensor->Resize(dims);
  auto *dst_tensor_ptr = dst_tensor->mutable_data(place, dtype);
  const auto *src_tensor_ptr = src_tensor.data<void>();

  auto sizeof_dtype = framework::SizeOfType(dtype);
  int64_t row_offset = 0;
111
  if (stream != dev_ctx->stream()) dev_ctx->Wait();
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
  for (int i = 0; i < strategy.nranks_; ++i) {
    if (cpu_rows_num_ptr[i] > 0) {
      // 2. Broadcast the rows of SelectedRows
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclBroadcast(
          src_rows_ptr, dst_rows_ptr + row_offset, cpu_rows_num_ptr[i],
          ncclInt64, i, comm, stream));
      // 3. Broadcast the tensor data of SelectedRows
      auto *dst_tensor_ptr_i = reinterpret_cast<uint8_t *>(dst_tensor_ptr) +
                               row_offset * feature_size * sizeof_dtype;
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclBroadcast(
          src_tensor_ptr, dst_tensor_ptr_i, cpu_rows_num_ptr[i] * feature_size,
          nccl_dtype, i, comm, stream));
      row_offset += cpu_rows_num_ptr[i];
    }
  }

128
  VLOG(3) << "Original SelectedRows rows: "
129
          << string::join_strings(src_rows, ',');
130
  VLOG(3) << "Result SelectedRows rows: "
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
          << string::join_strings(*dst_rows, ',');
}
#endif

void AllReduce(const framework::Variable &src, framework::Variable *dst,
               const ParallelStrategy &strategy, cudaStream_t stream) {
  if (src.IsType<framework::LoDTensor>()) {
    if (!dst->IsType<framework::LoDTensor>()) {
      dst->Clear();
    }
    AllReduce(src.Get<framework::LoDTensor>(),
              dst->GetMutable<framework::LoDTensor>(), strategy, stream);
#if NCCL_VERSION_CODE >= 2212
  } else if (src.IsType<framework::SelectedRows>()) {
    if (&src != dst) {
      if (!dst->IsType<framework::SelectedRows>()) {
        dst->Clear();
      }
      AllReduce(src.Get<framework::SelectedRows>(),
                dst->GetMutable<framework::SelectedRows>(), strategy, stream);
    } else {
      // SelectedRows cannot be allreduce in-place
      framework::Variable tmp_dst;
      AllReduce(src.Get<framework::SelectedRows>(),
                tmp_dst.GetMutable<framework::SelectedRows>(), strategy,
                stream);
      *dst = std::move(tmp_dst);
    }
#endif
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Unsupported variable type %s for imperative allreduce, only "
        "LoDTensor and SelectedRows are supported.",
        platform::demangle(framework::ToTypeName(src.Type()))));
  }
}

static const platform::Place &GetVarPlace(const framework::Variable &src) {
  if (src.IsType<framework::LoDTensor>()) {
    return src.Get<framework::LoDTensor>().place();
#if NCCL_VERSION_CODE >= 2212
  } else if (src.IsType<framework::SelectedRows>()) {
    return src.Get<framework::SelectedRows>().value().place();
#endif
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Cannot get unsupported variable type %s for imperative allreduce, "
        "only "
        "LoDTensor and SelectedRows are supported.",
        platform::demangle(framework::ToTypeName(src.Type()))));
  }
}

void AllReduce(const framework::Variable &src, framework::Variable *dst,
               const ParallelStrategy &strategy) {
  const auto &place = GetVarPlace(src);
  PADDLE_ENFORCE_EQ(
      platform::is_gpu_place(place), true,
      platform::errors::Unimplemented(
          "Imperative mode does not support multi-CPU training yet."));
  auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
      platform::DeviceContextPool::Instance().Get(place));
  auto stream = dev_ctx->stream();
  AllReduce(src, dst, strategy, stream);
}

}  // namespace imperative
}  // namespace paddle

#endif