interpolate_kernel.cc 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/interpolate_kernel.h"

#include "paddle/phi/backends/onednn/onednn_reuse.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/interpolate_function.h"

namespace phi {

namespace funcs {
template <typename T = float>
class InterpolateOneDNNHandler
    : public OneDNNHandlerNoCachingT<T, dnnl::resampling_forward> {
 public:
  InterpolateOneDNNHandler(const dnnl::algorithm algo,
                           const dnnl::engine engine,
                           Place cpu_place,
                           const DenseTensor* x,
                           DenseTensor* out)
      : OneDNNHandlerNoCachingT<T, dnnl::resampling_forward>(engine,
                                                             cpu_place) {
    const auto dst_tz = vectorize(out->dims());
    const auto dst_md = dnnl::memory::desc(
        dst_tz, OneDNNGetDataType<T>(), OneDNNMemoryFormat::any);
    this->AcquireForwardPrimitiveDescriptor(
        dnnl::prop_kind::forward_inference, algo, x->mem_desc(), dst_md);
  }
};
}  // namespace funcs

std::vector<int> ComputeOutputShape(
    const DenseTensor* x,
    const paddle::optional<DenseTensor>& out_size,
    const paddle::optional<std::vector<const DenseTensor*>>& size_tensor,
    const paddle::optional<DenseTensor>& scale_tensor,
    const std::string& data_layout,
    int out_d,
    int out_h,
    int out_w,
    const std::vector<float>& scale_attr) {
  const auto& in_dims = x->dims();
  const DDim in_dhw_dims = slice_ddim(in_dims, 2, in_dims.size());

  std::vector<int> out_dims;
  out_dims.reserve(5);
  if (in_dhw_dims.size() == 1) {
    out_dims.push_back(out_w);
  } else if (in_dhw_dims.size() == 2) {
    out_dims.push_back(out_h);
    out_dims.push_back(out_w);
  } else if (in_dhw_dims.size() == 3) {
    out_dims.push_back(out_d);
    out_dims.push_back(out_h);
    out_dims.push_back(out_w);
  }

  if (size_tensor && size_tensor.get().size() > 0) {
    auto new_size = funcs::get_new_shape(size_tensor.get());
    if (new_size.size() == out_dims.size()) {
      out_dims = new_size;
    }
  } else if (out_size) {
    auto out_size_data =
        funcs::get_new_data_from_tensor<int>(out_size.get_ptr());
    if (out_size_data.size() == out_dims.size()) {
      out_dims = out_size_data;
    }
  } else {
    std::vector<float> scale;
    scale.reserve(3);
    if (scale_tensor) {
      auto scale_data =
          funcs::get_new_data_from_tensor<float>(scale_tensor.get_ptr());
      scale.resize(3, scale_data[0]);
      std::copy(scale_data.begin(), scale_data.end(), scale.begin());
    } else {
      if (scale_attr.size() > 0) {
        scale.resize(3, scale_attr[0]);
        std::copy(scale_attr.begin(), scale_attr.end(), scale.begin());
      }
    }

    if (scale.size() == 3 && scale[0] > 0.0f && scale[1] > 0.0f &&
        scale[2] > 0.0f) {
      int j = 0;
      std::vector<int64_t> in_dhw_vec = vectorize(in_dhw_dims);
      std::transform(
          in_dhw_vec.begin(),
          in_dhw_vec.end(),
          out_dims.begin(),
          [&](int64_t i) -> int { return static_cast<int>(i * scale[j++]); });
    }
  }

  PADDLE_ENFORCE_GT(
      std::all_of(
          out_dims.begin(), out_dims.end(), [](int i) { return i > 0; }),
      0,
      errors::InvalidArgument("out_d, out_h, out_w of Op(interpolate) "
                              "should be greater than 0."));

  const std::vector<int64_t> nc_dims = {in_dims[0], in_dims[1]};
  out_dims.insert(out_dims.begin(), nc_dims.begin(), nc_dims.end());
  return out_dims;
}

template <typename T, typename Context>
void InterpolateKernel(
    const Context& dev_ctx,
    const DenseTensor& x,
    const paddle::optional<DenseTensor>& out_size,
    const paddle::optional<std::vector<const DenseTensor*>>& size_tensor,
    const paddle::optional<DenseTensor>& scale_tensor,
    const std::string& data_layout,
    int out_d,
    int out_h,
    int out_w,
    const std::vector<float>& scale,
    const std::string& interp_method,
    DenseTensor* out) {
  const auto& onednn_engine = dev_ctx.GetEngine();

  const dnnl::algorithm algo = (interp_method == "nearest")
                                   ? dnnl::algorithm::resampling_nearest
                                   : dnnl::algorithm::resampling_linear;

  const auto out_dims_vec = ComputeOutputShape(&x,
                                               out_size,
                                               size_tensor,
                                               scale_tensor,
                                               data_layout,
                                               out_d,
                                               out_h,
                                               out_w,
                                               scale);
  DDim dim_out = make_ddim(out_dims_vec);
  out->Resize(dim_out);

  funcs::InterpolateOneDNNHandler<T> handler(
      algo, onednn_engine, dev_ctx.GetPlace(), &x, out);

  auto src_memory_p = handler.AcquireSrcMemory(&x);
  auto dst_memory_p = handler.AcquireDstMemory(out);

  auto resampling_prim = handler.AcquireForwardPrimitive();
  const std::unordered_map<int, dnnl::memory> args = {
      {DNNL_ARG_SRC, *src_memory_p}, {DNNL_ARG_DST, *dst_memory_p}};
  auto& astream = OneDNNContext::tls().get_stream();

  resampling_prim->execute(astream, args);
  astream.wait();

  out->set_mem_desc(dst_memory_p->get_desc());
}

template <typename T, typename Context>
void BilinearInterpKernel(
    const Context& ctx,
    const DenseTensor& x,
    const paddle::optional<DenseTensor>& out_size,
    const paddle::optional<std::vector<const DenseTensor*>>& size_tensor,
    const paddle::optional<DenseTensor>& scale_tensor,
    const std::string& data_layout,
    int out_d,
    int out_h,
    int out_w,
    const std::vector<float>& scale,
    const std::string& interp_method,
    bool align_corners,
    int align_mode,
    DenseTensor* output) {
  InterpolateKernel<T, Context>(ctx,
                                x,
                                out_size,
                                size_tensor,
                                scale_tensor,
                                data_layout,
                                out_d,
                                out_h,
                                out_w,
                                scale,
                                interp_method,
                                output);
}

template <typename T, typename Context>
void NearestInterpKernel(
    const Context& ctx,
    const DenseTensor& x,
    const paddle::optional<DenseTensor>& out_size,
    const paddle::optional<std::vector<const DenseTensor*>>& size_tensor,
    const paddle::optional<DenseTensor>& scale_tensor,
    const std::string& data_layout,
    int out_d,
    int out_h,
    int out_w,
    const std::vector<float>& scale,
    const std::string& interp_method,
    bool align_corners,
    int align_mode,
    DenseTensor* output) {
  InterpolateKernel<T, Context>(ctx,
                                x,
                                out_size,
                                size_tensor,
                                scale_tensor,
                                data_layout,
                                out_d,
                                out_h,
                                out_w,
                                scale,
                                interp_method,
                                output);
}
}  // namespace phi

PD_REGISTER_KERNEL(
231
    bilinear_interp, OneDNN, ONEDNN, phi::BilinearInterpKernel, float) {}
232 233 234

PD_REGISTER_KERNEL(nearest_interp,
                   OneDNN,
235
                   ONEDNN,
236 237 238 239 240
                   phi::NearestInterpKernel,
                   float,
                   phi::dtype::bfloat16,
                   int8_t,
                   uint8_t) {}