lite_resnet50_test.cc 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <glog/logging.h>
#include <gtest/gtest.h>
#include <cmath>

19
#include "gflags/gflags.h"
20 21 22 23 24 25 26 27 28 29
#include "paddle/fluid/inference/tests/api/tester_helper.h"

namespace paddle {
namespace inference {

TEST(AnalysisPredictor, use_gpu) {
  std::string model_dir = FLAGS_infer_model + "/" + "model";
  AnalysisConfig config;
  config.EnableUseGpu(100, 0);
  config.SetModel(model_dir + "/model", model_dir + "/params");
W
Wilber 已提交
30
  config.EnableLiteEngine(paddle::AnalysisConfig::Precision::kFloat32, true);
31 32 33 34 35 36 37 38 39 40 41

  std::vector<PaddleTensor> inputs;
  auto predictor = CreatePaddlePredictor(config);
  const int batch = 1;
  const int channel = 3;
  const int height = 318;
  const int width = 318;
  const int input_num = batch * channel * height * width;
  std::vector<float> input(input_num, 1);

  PaddleTensor in;
42
  in.shape = {batch, channel, height, width};
43 44 45 46 47 48 49 50 51
  in.data =
      PaddleBuf(static_cast<void*>(input.data()), input_num * sizeof(float));
  in.dtype = PaddleDType::FLOAT32;
  inputs.emplace_back(in);

  std::vector<PaddleTensor> outputs;
  ASSERT_TRUE(predictor->Run(inputs, &outputs));

  const std::vector<float> truth_values = {
W
Wilber 已提交
52 53 54 55 56 57 58 59 60
      127.779f,  738.165f,  1013.22f,  -438.17f,  366.401f,  927.659f,
      736.222f,  -633.684f, -329.927f, -430.155f, -633.062f, -146.548f,
      -1324.28f, -1349.36f, -242.675f, 117.448f,  -801.723f, -391.514f,
      -404.818f, 454.16f,   515.48f,   -133.031f, 69.293f,   590.096f,
      -1434.69f, -1070.89f, 307.074f,  400.525f,  -316.12f,  -587.125f,
      -161.056f, 800.363f,  -96.4708f, 748.706f,  868.174f,  -447.938f,
      112.737f,  1127.2f,   47.4355f,  677.72f,   593.186f,  -336.4f,
      551.362f,  397.823f,  78.3979f,  -715.398f, 405.969f,  404.256f,
      246.019f,  -8.42969f, 131.365f,  -648.051f};
61 62 63 64 65

  const size_t expected_size = 1;
  EXPECT_EQ(outputs.size(), expected_size);
  float* data_o = static_cast<float*>(outputs[0].data.data());
  for (size_t j = 0; j < outputs[0].data.length() / sizeof(float); j += 10) {
66
    EXPECT_NEAR((data_o[j] - truth_values[j / 10]) / truth_values[j / 10], 0.,
W
Wilber 已提交
67
                12e-5);
68 69 70 71 72
  }
}

}  // namespace inference
}  // namespace paddle
W
Wilber 已提交
73 74 75 76 77 78 79 80 81 82 83

namespace paddle_infer {

TEST(Predictor, use_gpu) {
  std::string model_dir = FLAGS_infer_model + "/" + "model";
  Config config;
  config.EnableUseGpu(100, 0);
  config.SetModel(model_dir + "/model", model_dir + "/params");
  config.EnableLiteEngine(PrecisionType::kFloat32);

  auto predictor = CreatePredictor(config);
W
Wilber 已提交
84

W
Wilber 已提交
85 86 87 88 89 90 91 92 93 94
  const int batch = 1;
  const int channel = 3;
  const int height = 318;
  const int width = 318;
  const int input_num = batch * channel * height * width;
  std::vector<float> input(input_num, 1);

  auto input_names = predictor->GetInputNames();
  auto input_t = predictor->GetInputHandle(input_names[0]);

95
  input_t->Reshape({batch, channel, height, width});
W
Wilber 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109
  input_t->CopyFromCpu(input.data());
  predictor->Run();

  auto output_names = predictor->GetOutputNames();
  auto output_t = predictor->GetOutputHandle(output_names[0]);
  std::vector<int> output_shape = output_t->shape();
  size_t out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
                                   std::multiplies<int>());

  std::vector<float> out_data;
  out_data.resize(out_num);
  output_t->CopyToCpu(out_data.data());

  const std::vector<float> truth_values = {
W
Wilber 已提交
110 111 112 113 114 115 116 117 118
      127.779f,  738.165f,  1013.22f,  -438.17f,  366.401f,  927.659f,
      736.222f,  -633.684f, -329.927f, -430.155f, -633.062f, -146.548f,
      -1324.28f, -1349.36f, -242.675f, 117.448f,  -801.723f, -391.514f,
      -404.818f, 454.16f,   515.48f,   -133.031f, 69.293f,   590.096f,
      -1434.69f, -1070.89f, 307.074f,  400.525f,  -316.12f,  -587.125f,
      -161.056f, 800.363f,  -96.4708f, 748.706f,  868.174f,  -447.938f,
      112.737f,  1127.2f,   47.4355f,  677.72f,   593.186f,  -336.4f,
      551.362f,  397.823f,  78.3979f,  -715.398f, 405.969f,  404.256f,
      246.019f,  -8.42969f, 131.365f,  -648.051f};
W
Wilber 已提交
119 120 121 122 123 124 125 126 127

  float* data_o = out_data.data();
  for (size_t j = 0; j < out_num; j += 10) {
    EXPECT_NEAR((data_o[j] - truth_values[j / 10]) / truth_values[j / 10], 0.,
                10e-5);
  }
}

}  // namespace paddle_infer