huber_loss_op_npu.cc 5.2 KB
Newer Older
Z
zhulei 已提交
1
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2

Z
zhulei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Z
zhulei 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

Z
zhulei 已提交
9 10 11 12
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
13
limitations under the License. */
Z
zhulei 已提交
14

15
#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
Z
zhulei 已提交
17 18 19 20

namespace paddle {
namespace operators {

21
using Tensor = phi::DenseTensor;
Z
zhulei 已提交
22 23

template <typename T>
24 25
void HuberLossSub(const platform::Place& place,
                  const aclrtStream& stream,
26 27 28
                  const phi::DenseTensor* x,
                  const phi::DenseTensor* y,
                  phi::DenseTensor* z) {
Z
zhulei 已提交
29 30 31 32 33 34 35
  //  Calculate z = x - y
  z->mutable_data<T>(x->dims(), place);
  const auto& runner = NpuOpRunner("Sub", {*x, *y}, {*z}, {});
  runner.Run(stream);
}

template <typename T>
36 37
void HuberLossMuls(const platform::Place& place,
                   const aclrtStream& stream,
38
                   const phi::DenseTensor* x,
39
                   float scalar,
40
                   phi::DenseTensor* y) {
Z
zhulei 已提交
41 42 43 44 45 46 47
  //  Calculate y = x + scale
  y->mutable_data<T>(x->dims(), place);
  const auto& runner = NpuOpRunner("Muls", {*x}, {*y}, {{"value", scalar}});
  runner.Run(stream);
}

template <typename T>
48 49
void HuberLossZerosLike(const platform::Place& place,
                        const aclrtStream& stream,
50 51
                        const phi::DenseTensor* x,
                        phi::DenseTensor* y) {
Z
zhulei 已提交
52 53 54 55 56 57 58
  y->mutable_data<T>(x->dims(), place);
  const auto& runner = NpuOpRunner("ZerosLike", {*x}, {*y}, {});
  runner.Run(stream);
}

template <typename T>
void HuberLossSmoothL1Loss(const platform::Place& place,
59
                           const aclrtStream& stream,
60 61
                           const phi::DenseTensor* x,
                           const phi::DenseTensor* y,
62
                           float delta,
63
                           phi::DenseTensor* z) {
Z
zhulei 已提交
64 65 66 67 68 69 70 71
  z->mutable_data<T>(x->dims(), place);
  const auto& runner =
      NpuOpRunner("SmoothL1Loss", {*x, *y}, {*z}, {{"sigma", delta}});
  runner.Run(stream);
}

template <typename T>
void HuberLossSmoothL1LossGrad(const platform::Place& place,
72
                               const aclrtStream& stream,
73 74 75
                               const phi::DenseTensor* pred,
                               const phi::DenseTensor* lab,
                               const phi::DenseTensor* dout,
76
                               float sigma,
77
                               phi::DenseTensor* grad) {
Z
zhulei 已提交
78
  grad->mutable_data<T>(pred->dims(), place);
79 80
  const auto& runner = NpuOpRunner(
      "SmoothL1LossGrad", {*pred, *lab, *dout}, {*grad}, {{"sigma", sigma}});
Z
zhulei 已提交
81 82 83 84 85 86 87
  runner.Run(stream);
}

template <typename T>
class HuberLossNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
88 89 90 91
    auto* in0 = ctx.Input<phi::DenseTensor>("X");
    auto* in1 = ctx.Input<phi::DenseTensor>("Y");
    auto* residual = ctx.Output<phi::DenseTensor>("Residual");
    auto* out = ctx.Output<phi::DenseTensor>("Out");
Z
zhulei 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    auto delta = ctx.Attr<float>("delta");

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    auto place = ctx.GetPlace();
    HuberLossSub<T>(place, stream, in1, in0, residual);

    HuberLossSmoothL1Loss<T>(place, stream, in0, in1, delta, out);
    HuberLossMuls<T>(place, stream, out, delta, out);
  }
};

template <typename T>
class HuberLossGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
109 110 111 112
    auto* residual = ctx.Input<phi::DenseTensor>("Residual");
    auto* dout = ctx.Input<phi::DenseTensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<phi::DenseTensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<phi::DenseTensor>(framework::GradVarName("Y"));
Z
zhulei 已提交
113 114 115 116 117 118 119 120 121 122 123
    auto delta = ctx.Attr<float>("delta");

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    auto place = ctx.GetPlace();

    Tensor t_grad_rd;
    if (dx || dy) {
      Tensor t_zero;
      HuberLossZerosLike<T>(place, stream, residual, &t_zero);
124 125
      HuberLossSmoothL1LossGrad<T>(
          place, stream, residual, &t_zero, dout, delta, &t_grad_rd);
Z
zhulei 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    }
    if (dx) {
      HuberLossMuls<T>(place, stream, &t_grad_rd, -delta, dx);
    }
    if (dy) {
      HuberLossMuls<T>(place, stream, &t_grad_rd, delta, dy);
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

142 143
REGISTER_OP_NPU_KERNEL(huber_loss,
                       ops::HuberLossNPUKernel<float>,
Z
zhulei 已提交
144
                       ops::HuberLossNPUKernel<plat::float16>);
145 146
REGISTER_OP_NPU_KERNEL(huber_loss_grad,
                       ops::HuberLossGradNPUKernel<float>,
Z
zhulei 已提交
147
                       ops::HuberLossGradNPUKernel<plat::float16>);