one_hot_kernel.cu 3.2 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/one_hot_kernel.h"

#include "paddle/fluid/platform/device/gpu/gpu_info.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace phi {

using paddle::platform::PADDLE_CUDA_NUM_THREADS;

template <typename InT, typename OutT>
__global__ void FillOutputKernel(const InT* p_in_data,
                                 OutT* p_out_data,
                                 const int64_t numel,
                                 const int depth) {
  int idx = blockIdx.x * blockDim.x + threadIdx.x;
32 33 34 35 36 37 38 39
  if (idx < numel) {
    PADDLE_ENFORCE(p_in_data[idx] >= 0 && p_in_data[idx] < depth,
                   "Illegal index value, Input(input) value should be "
                   "greater than or equal to 0, and less than depth [%d], "
                   "but received [%lld].",
                   depth,
                   p_in_data[idx]);

H
hong 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
    *(p_out_data + (idx * depth) + p_in_data[idx]) = 1.0;
  }
}

template <typename DeviceContext, typename InT>
struct OneHotV2OpCUDAFunctor {
  const DenseTensor* in_;
  DenseTensor* out_;
  const DeviceContext& ctx_;
  int depth_;

  OneHotV2OpCUDAFunctor(const DenseTensor* in,
                        DenseTensor* out,
                        int depth,
                        const DeviceContext& ctx)
      : in_(in), out_(out), depth_(depth), ctx_(ctx) {}

  template <typename OutT>
  void apply() const {
    auto* p_in_data = in_->data<InT>();
    auto numel = in_->numel();
    auto* p_out_data = ctx_.template Alloc<OutT>(out_);
    auto stream = ctx_.stream();
    funcs::set_constant(ctx_, out_, 0.0);

    FillOutputKernel<<<(numel + PADDLE_CUDA_NUM_THREADS - 1) /
                           PADDLE_CUDA_NUM_THREADS,
                       PADDLE_CUDA_NUM_THREADS,
                       0,
                       stream>>>(p_in_data, p_out_data, numel, depth_);
  }
};

template <typename T, typename Context>
void OneHotRawKernel(const Context& dev_ctx,
                     const DenseTensor& x,
76
                     const Scalar& depth,
H
hong 已提交
77 78 79
                     DataType dtype,
                     bool allow_out_of_range,
                     DenseTensor* out) {
80
  auto depth_v = depth.to<int>();
H
hong 已提交
81 82
  auto out_dims = out->dims();
  if (out_dims[out_dims.size() - 1] == -1) {
83
    out_dims[out_dims.size() - 1] = depth_v;
H
hong 已提交
84 85 86 87
    out->Resize(out_dims);
  }

  phi::VisitDataType(
88
      dtype, OneHotV2OpCUDAFunctor<Context, T>(&x, out, depth_v, dev_ctx));
H
hong 已提交
89 90 91 92 93 94
}

}  // namespace phi

PD_REGISTER_KERNEL(
    one_hot_raw, GPU, ALL_LAYOUT, phi::OneHotRawKernel, int, int64_t) {}