box_coder_op.h 6.4 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
G
gaoyuan 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
S
Siddharth Goyal 已提交
13
#include <string>
Y
Yi Wang 已提交
14 15
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
G
gaoyuan 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

namespace paddle {
namespace operators {

enum class BoxCodeType { kEncodeCenterSize = 0, kDecodeCenterSize = 1 };

inline BoxCodeType GetBoxCodeType(const std::string& type) {
  if (type == "encode_center_size") {
    return BoxCodeType::kEncodeCenterSize;
  } else if (type == "decode_center_size") {
    return BoxCodeType::kDecodeCenterSize;
  }
  PADDLE_THROW("Not support type %s.", type);
}

template <typename T>
class BoxCoderKernel : public framework::OpKernel<T> {
 public:
G
gaoyuan 已提交
34 35 36 37
  void EncodeCenterSize(const framework::Tensor& target_box,
                        const framework::Tensor& prior_box,
                        const framework::Tensor& prior_box_var,
                        T* output) const {
G
gaoyuan 已提交
38 39
    int64_t row = target_box.dims()[0];
    int64_t col = prior_box.dims()[0];
G
gaoyuan 已提交
40
    int64_t len = prior_box.dims()[1];
G
gaoyuan 已提交
41 42 43 44 45 46
    auto* target_box_data = target_box.data<T>();
    auto* prior_box_data = prior_box.data<T>();
    auto* prior_box_var_data = prior_box_var.data<T>();

    for (int64_t i = 0; i < row; ++i) {
      for (int64_t j = 0; j < col; ++j) {
G
gaoyuan 已提交
47 48
        T prior_box_width =
            prior_box_data[j * len + 2] - prior_box_data[j * len];
G
gaoyuan 已提交
49
        T prior_box_height =
G
gaoyuan 已提交
50
            prior_box_data[j * len + 3] - prior_box_data[j * len + 1];
G
gaoyuan 已提交
51
        T prior_box_center_x =
G
gaoyuan 已提交
52
            (prior_box_data[j * len + 2] + prior_box_data[j * len]) / 2;
G
gaoyuan 已提交
53
        T prior_box_center_y =
G
gaoyuan 已提交
54
            (prior_box_data[j * len + 3] + prior_box_data[j * len + 1]) / 2;
G
gaoyuan 已提交
55 56

        T target_box_center_x =
G
gaoyuan 已提交
57
            (target_box_data[i * len + 2] + target_box_data[i * len]) / 2;
G
gaoyuan 已提交
58
        T target_box_center_y =
G
gaoyuan 已提交
59
            (target_box_data[i * len + 3] + target_box_data[i * len + 1]) / 2;
G
gaoyuan 已提交
60
        T target_box_width =
G
gaoyuan 已提交
61
            target_box_data[i * len + 2] - target_box_data[i * len];
G
gaoyuan 已提交
62
        T target_box_height =
G
gaoyuan 已提交
63
            target_box_data[i * len + 3] - target_box_data[i * len + 1];
G
gaoyuan 已提交
64

G
gaoyuan 已提交
65
        size_t offset = i * col * len + j * len;
G
gaoyuan 已提交
66
        output[offset] = (target_box_center_x - prior_box_center_x) /
G
gaoyuan 已提交
67
                         prior_box_width / prior_box_var_data[j * len];
G
gaoyuan 已提交
68
        output[offset + 1] = (target_box_center_y - prior_box_center_y) /
G
gaoyuan 已提交
69
                             prior_box_height / prior_box_var_data[j * len + 1];
G
gaoyuan 已提交
70 71
        output[offset + 2] =
            std::log(std::fabs(target_box_width / prior_box_width)) /
G
gaoyuan 已提交
72
            prior_box_var_data[j * len + 2];
G
gaoyuan 已提交
73 74
        output[offset + 3] =
            std::log(std::fabs(target_box_height / prior_box_height)) /
G
gaoyuan 已提交
75
            prior_box_var_data[j * len + 3];
G
gaoyuan 已提交
76 77 78
      }
    }
  }
G
gaoyuan 已提交
79 80 81 82
  void DecodeCenterSize(const framework::Tensor& target_box,
                        const framework::Tensor& prior_box,
                        const framework::Tensor& prior_box_var,
                        T* output) const {
G
gaoyuan 已提交
83 84
    int64_t row = target_box.dims()[0];
    int64_t col = prior_box.dims()[0];
G
gaoyuan 已提交
85
    int64_t len = prior_box.dims()[1];
G
gaoyuan 已提交
86 87 88 89 90 91 92

    auto* target_box_data = target_box.data<T>();
    auto* prior_box_data = prior_box.data<T>();
    auto* prior_box_var_data = prior_box_var.data<T>();

    for (int64_t i = 0; i < row; ++i) {
      for (int64_t j = 0; j < col; ++j) {
Y
Yuan Gao 已提交
93
        size_t offset = i * col * len + j * len;
G
gaoyuan 已提交
94 95
        T prior_box_width =
            prior_box_data[j * len + 2] - prior_box_data[j * len];
G
gaoyuan 已提交
96
        T prior_box_height =
G
gaoyuan 已提交
97
            prior_box_data[j * len + 3] - prior_box_data[j * len + 1];
G
gaoyuan 已提交
98
        T prior_box_center_x =
G
gaoyuan 已提交
99
            (prior_box_data[j * len + 2] + prior_box_data[j * len]) / 2;
G
gaoyuan 已提交
100
        T prior_box_center_y =
G
gaoyuan 已提交
101
            (prior_box_data[j * len + 3] + prior_box_data[j * len + 1]) / 2;
G
gaoyuan 已提交
102

G
gaoyuan 已提交
103
        T target_box_center_x = prior_box_var_data[j * len] *
Y
Yuan Gao 已提交
104
                                    target_box_data[offset] * prior_box_width +
G
gaoyuan 已提交
105
                                prior_box_center_x;
G
gaoyuan 已提交
106
        T target_box_center_y = prior_box_var_data[j * len + 1] *
Y
Yuan Gao 已提交
107
                                    target_box_data[offset + 1] *
G
gaoyuan 已提交
108 109
                                    prior_box_height +
                                prior_box_center_y;
G
gaoyuan 已提交
110
        T target_box_width = std::exp(prior_box_var_data[j * len + 2] *
Y
Yuan Gao 已提交
111
                                      target_box_data[offset + 2]) *
G
gaoyuan 已提交
112
                             prior_box_width;
G
gaoyuan 已提交
113
        T target_box_height = std::exp(prior_box_var_data[j * len + 3] *
Y
Yuan Gao 已提交
114
                                       target_box_data[offset + 3]) *
G
gaoyuan 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128
                              prior_box_height;

        output[offset] = target_box_center_x - target_box_width / 2;
        output[offset + 1] = target_box_center_y - target_box_height / 2;
        output[offset + 2] = target_box_center_x + target_box_width / 2;
        output[offset + 3] = target_box_center_y + target_box_height / 2;
      }
    }
  }

  void Compute(const framework::ExecutionContext& context) const override {
    auto* prior_box = context.Input<framework::Tensor>("PriorBox");
    auto* prior_box_var = context.Input<framework::Tensor>("PriorBoxVar");
    auto* target_box = context.Input<framework::LoDTensor>("TargetBox");
G
gaoyuan 已提交
129
    auto* output_box = context.Output<framework::Tensor>("OutputBox");
G
gaoyuan 已提交
130 131 132 133 134 135 136

    if (target_box->lod().size()) {
      PADDLE_ENFORCE_EQ(target_box->lod().size(), 1UL,
                        "Only support 1 level of LoD.");
    }
    auto row = target_box->dims()[0];
    auto col = prior_box->dims()[0];
G
gaoyuan 已提交
137
    auto len = prior_box->dims()[1];
G
gaoyuan 已提交
138

G
gaoyuan 已提交
139
    output_box->mutable_data<T>({row, col, len}, context.GetPlace());
G
gaoyuan 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152

    auto code_type = GetBoxCodeType(context.Attr<std::string>("code_type"));
    T* output = output_box->data<T>();
    if (code_type == BoxCodeType::kEncodeCenterSize) {
      EncodeCenterSize(*target_box, *prior_box, *prior_box_var, output);
    } else if (code_type == BoxCodeType::kDecodeCenterSize) {
      DecodeCenterSize(*target_box, *prior_box, *prior_box_var, output);
    }
  }
};

}  // namespace operators
}  // namespace paddle