1. Add `with profiler.profiler(...)` to the main training loop. After run, the code will generate a profile record file `/tmp/profile`. **Warning**: Please do not run too many batches when use profiler to record timeline information, for the profile record will grow with the batch number.
```python with profiler.profiler('All', 'total', '/tmp/profile') as prof: for pass_id in range(pass_num): for batch_id, data in enumerate(train_reader()): exe.run(fluid.default_main_program(), feed=feeder.feed(data), fetch_list=[], use_program_cache=True) ... ```1. Run `python paddle/tools/timeline.py` to process `/tmp/profile`, it will generate anotherfile `/tmp/timeline` by default. You can change the path by cmd parameter, please take a look at[timeline.py](https://github.com/PaddlePaddle/Paddle/blob/develop/tools/timeline.py) for details.1. Open chrome and visit <chrome://tracing/>, use `load` button to load the generated `timeline` file. ![chrome tracing](./tracing.jpeg)1. The resulting timeline should be like: ![chrome timeline](./timeline.jpeg)