cpu_profiling_cn.md 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
此教程会介绍如何使用Python的cProfile包、Python库yep、Google perftools来进行性能分析 (profiling) 与调优(performance tuning)。

Profling 指发现性能瓶颈。系统中的瓶颈可能和程序员开发过程中想象的瓶颈相去甚远。Tuning 指消除瓶颈。性能优化的过程通常是不断重复地 profiling 和 tuning。

PaddlePaddle 用户一般通过调用 Python API 编写深度学习程序。大部分 Python API 调用用 C++ 写的 libpaddle.so。所以 PaddlePaddle 的性能分析与调优分为两个部分:

* Python 代码的性能分析
* Python 与 C++ 混合代码的性能分析


W
weixing 已提交
11
# Python代码的性能分析
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

### 生成性能分析文件

Python标准库中提供了性能分析的工具包,[cProfile](https://docs.python.org/2/library/profile.html)。生成Python性能分析的命令如下:

```bash
python -m cProfile -o profile.out main.py
```

其中 `main.py` 是我们要分析的程序,`-o`标识了一个输出的文件名,用来存储本次性能分析的结果。如果不指定这个文件,`cProfile`会打印到标准输出。

### 查看性能分析文件

`cProfile` 在main.py 运行完毕后输出`profile.out`。我们可以使用[`cprofilev`](https://github.com/ymichael/cprofilev)来查看性能分析结果。`cprofilev`是一个Python的第三方库。使用它会开启一个HTTP服务,将性能分析结果以网页的形式展示出来:

```bash
cprofilev -a 0.0.0.0 -p 3214 -f profile.out main.py
```

其中`-a`标识HTTP服务绑定的IP。使用`0.0.0.0`允许外网访问这个HTTP服务。`-p`标识HTTP服务的端口。`-f`标识性能分析的结果文件。`main.py`标识被性能分析的源文件。

用Web浏览器访问对应网址,即可显示性能分析的结果:

```
   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.284    0.284   29.514   29.514 main.py:1(<module>)
38
     4696    0.128    0.000   15.748    0.003 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/fluid/executor.py:20(run)
39 40 41 42 43 44
     4696   12.040    0.003   12.040    0.003 {built-in method run}
        1    0.144    0.144    6.534    6.534 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/v2/__init__.py:14(<module>)
```

每一列的含义是:

_青葱's avatar
_青葱 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
<table>
<thead>
<tr>
<th>列名</th>
<th>含义 </th>
</tr>
</thead>
<tbody>
<tr>
<td> ncalls</td>
<td> 函数的调用次数</td>
</tr>
<tr>
<td>tottime</td>
<td> 函数实际使用的总时间。该时间去除掉本函数调用其他函数的时间</td>
</tr>
<tr>
<td> percall </td>
<td> tottime的每次调用平均时间</td>
</tr>
<tr>
<td> cumtime</td>
<td> 函数总时间。包含这个函数调用其他函数的时间</td>
</tr>
<tr>
<td> percall</td>
<td> cumtime的每次调用平均时间</td>
</tr>
<tr>
<td> filename:lineno(function) </td>
<td> 文件名, 行号,函数名 </td>
</tr>
</tbody>
</table>
79 80 81 82 83 84 85 86 87 88 89


### 寻找性能瓶颈

通常`tottime``cumtime`是寻找瓶颈的关键指标。这两个指标代表了某一个函数真实的运行时间。

将性能分析结果按照tottime排序,效果如下:

```text
     4696   12.040    0.003   12.040    0.003 {built-in method run}
   300005    0.874    0.000    1.681    0.000 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/v2/dataset/mnist.py:38(reader)
90 91 92
   107991    0.676    0.000    1.519    0.000 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/fluid/framework.py:219(__init__)
     4697    0.626    0.000    2.291    0.000 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/fluid/framework.py:428(sync_with_cpp)
        1    0.618    0.618    0.618    0.618 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/fluid/__init__.py:1(<module>)
93 94 95 96 97 98 99 100 101 102 103 104
```

可以看到最耗时的函数是C++端的`run`函数。这需要联合我们第二节`Python``C++`混合代码的性能分析来进行调优。而`sync_with_cpp`函数的总共耗时很长,每次调用的耗时也很长。于是我们可以点击`sync_with_cpp`的详细信息,了解其调用关系。

```text
Called By:

   Ordered by: internal time
   List reduced from 4497 to 2 due to restriction <'sync_with_cpp'>

Function                                                                                                 was called by...
                                                                                                             ncalls  tottime  cumtime
105 106 107
/home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/fluid/framework.py:428(sync_with_cpp)  <-    4697    0.626    2.291  /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/fluid/framework.py:562(sync_with_cpp)
/home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/fluid/framework.py:562(sync_with_cpp)  <-    4696    0.019    2.316  /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/fluid/framework.py:487(clone)
                                                                                                                  1    0.000    0.001  /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/fluid/framework.py:534(append_backward)
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181


Called:

   Ordered by: internal time
   List reduced from 4497 to 2 due to restriction <'sync_with_cpp'>
```

通常观察热点函数间的调用关系,和对应行的代码,就可以了解到问题代码在哪里。当我们做出性能修正后,再次进行性能分析(profiling)即可检查我们调优后的修正是否能够改善程序的性能。



## Python与C++混合代码的性能分析

### 生成性能分析文件

C++的性能分析工具非常多。常见的包括`gprof`, `valgrind`, `google-perftools`。但是调试Python中使用的动态链接库与直接调试原始二进制相比增加了很多复杂度。幸而Python的一个第三方库`yep`提供了方便的和`google-perftools`交互的方法。于是这里使用`yep`进行Python与C++混合代码的性能分析

使用`yep`前需要安装`google-perftools``yep`包。ubuntu下安装命令为

```bash
apt update
apt install libgoogle-perftools-dev
pip install yep
```

安装完毕后,我们可以通过

```bash
python -m yep -v main.py
```

生成性能分析文件。生成的性能分析文件为`main.py.prof`

命令行中的`-v`指定在生成性能分析文件之后,在命令行显示分析结果。我们可以在命令行中简单的看一下生成效果。因为C++与Python不同,编译时可能会去掉调试信息,运行时也可能因为多线程产生混乱不可读的性能分析结果。为了生成更可读的性能分析结果,可以采取下面几点措施:

1. 编译时指定`-g`生成调试信息。使用cmake的话,可以将CMAKE_BUILD_TYPE指定为`RelWithDebInfo`
2. 编译时一定要开启优化。单纯的`Debug`编译性能会和`-O2`或者`-O3`有非常大的差别。`Debug`模式下的性能测试是没有意义的。
3. 运行性能分析的时候,先从单线程开始,再开启多线程,进而多机。毕竟单线程调试更容易。可以设置`OMP_NUM_THREADS=1`这个环境变量关闭openmp优化。

### 查看性能分析文件

在运行完性能分析后,会生成性能分析结果文件。我们可以使用[`pprof`](https://github.com/google/pprof)来显示性能分析结果。注意,这里使用了用`Go`语言重构后的`pprof`,因为这个工具具有web服务界面,且展示效果更好。

安装`pprof`的命令和一般的`Go`程序是一样的,其命令如下:

```bash
go get github.com/google/pprof
```

进而我们可以使用如下命令开启一个HTTP服务:

```bash
pprof -http=0.0.0.0:3213 `which python`  ./main.py.prof
```

这行命令中,`-http`指开启HTTP服务。`which python`会产生当前Python二进制的完整路径,进而指定了Python可执行文件的路径。`./main.py.prof`输入了性能分析结果。

访问对应的网址,我们可以查看性能分析的结果。结果如下图所示:

![result](./pprof_1.png)


### 寻找性能瓶颈

与寻找Python代码的性能瓶颈类似,寻找Python与C++混合代码的性能瓶颈也是要看`tottime``cumtime`。而`pprof`展示的调用图也可以帮助我们发现性能中的问题。

例如下图中,

![kernel_perf](./pprof_2.png)

在一次训练中,乘法和乘法梯度的计算占用2%-4%左右的计算时间。而`MomentumOp`占用了17%左右的计算时间。显然,`MomentumOp`的性能有问题。

`pprof`中,对于性能的关键路径都做出了红色标记。先检查关键路径的性能问题,再检查其他部分的性能问题,可以更有次序的完成性能的优化。