api_gen.py 17.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import argparse


class API:
    prefix_tensor_name = 'dense_'

    def __init__(self, api_item_yaml):
        self.api = api_item_yaml['api']
        # args:
        #   inputs: 
        #     names : [], list of input names
        #   attrs:
        #     names : [], list of attribute names
        #     attr_info : { attr_name : (type, default_values)}    
        self.args = self.parse_args(api_item_yaml['args'])
        self.output = api_item_yaml['output']
        self.is_base_api = True
        if 'invoke' in api_item_yaml:
            self.is_base_api = False
            self.invoke = api_item_yaml['invoke']
        else:
            self.kernel = api_item_yaml['kernel']
            if 'backend' not in self.kernel or len(self.kernel['backend']) == 0:
                self.kernel['backend'] = None
            if 'layout' not in self.kernel or len(self.kernel['layout']) == 0:
                self.kernel['layout'] = None
            if 'data_type' not in self.kernel or len(self.kernel[
                    'data_type']) == 0:
                self.kernel['data_type'] = None
            if 'param' not in self.kernel or len(self.kernel['param']) == 0:
                self.kernel['param'] = None

            self.infer_meta = api_item_yaml['infer_meta']
            if 'param' not in self.infer_meta or len(self.infer_meta[
                    'param']) == 0:
                self.infer_meta['param'] = None

    def parse_args(self, args_str):
        inputs = {'names': []}
        attrs = {'names': [], 'attr_info': {}}
        args_str = args_str.strip()
        assert args_str.startswith('(') and args_str.endswith(')'), \
            f"Args declaration should start with '(' and end with ')', please check the args of {self.api} in api.yaml."
        args_str = args_str[1:-1]
        args_list = args_str.split(',')
        input_types = ['const Tensor&', 'const Tensor &']
        attr_types = ['const Scalar&', 'const Scalar &', 'const ScalarArray&', 'const ScalarArray &', \
                      'int', 'int32_t', 'int64_t', 'size_t', 'float', 'double', 'bool', \
                      'const std::vector<int64_t>&', 'Backend', 'DataLayout', 'DataType']
        args_declare_str = ""
        args_define_str = ""
        for item in args_list:
            item = item.strip()
            # match the input tensor
            has_input = False
            for in_type in input_types:
                if item.startswith(in_type):
                    input_name = item[len(in_type):].strip()
                    assert len(input_name) > 0, \
                        f"The input tensor name should not be empty. Please check the args of {self.api} in api.yaml."
                    inputs['names'].append(input_name)
                    args_declare_str = args_declare_str + in_type + ' ' + input_name + ', '
                    args_define_str = args_define_str + in_type + ' ' + input_name + ', '
                    has_input = True
                    break
            if has_input:
                continue

            # match the attribute
            for attr_type in attr_types:
                if item.startswith(attr_type):
                    attr_name = item[len(attr_type):].strip()
                    assert len(attr_name) > 0, \
                        f"The attribute name should not be empty. Please check the args of {self.api} in api.yaml."
                    default_value = None
                    if '=' in attr_name:
                        attr_infos = attr_name.split('=')
                        attr_name = attr_infos[0].strip()
                        default_value = attr_infos[1].strip()

                    default_value_str = "" if default_value is None else '=' + default_value
                    args_declare_str = args_declare_str + attr_type + ' ' + attr_name + default_value_str + ', '
                    args_define_str = args_define_str + attr_type + ' ' + attr_name + ', '
                    attrs['names'].append(attr_name)
                    attrs['attr_info'][attr_name] = (attr_type, default_value)
                    break

        args = {
            'inputs': inputs,
            'attrs': attrs,
            'args_declare': args_declare_str[:-2],
            'args_define': args_define_str[:-2]
        }
        return args

    def gene_api_declaration(self):
        return f"""
114
PADDLE_API {self.output} {self.api}({self.args['args_declare']});
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
"""

    def gene_kernel_select(self, input_names, attrs, kernel):

        kernel_key_item_init = """
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;
"""
        # Check the tensor options
        attr_backend_count = 0
        attr_layout_count = 0
        attr_data_type_count = 0
        for attr_name in attrs['names']:
            if attrs['attr_info'][attr_name][0] == 'Backend':
                assert kernel['backend'] is not None, \
                    f"{self.api} api: When there is a parameter with 'Backend' type in attributes, you must set backend of kernel manually."
                attr_backend_count = attr_backend_count + 1
            if attrs['attr_info'][attr_name][0] == 'DataLayout':
                assert kernel['layout'] is not None, \
                    f"{self.api} api: When there is a parameter with 'DataLayout' type in attributes, you must set layout of kernel manually."
                attr_layout_count = attr_layout_count + 1
            if attrs['attr_info'][attr_name][0] == 'DataType':
                assert kernel['data_type'] is not None, \
                    f"{self.api} api: When there is a parameter with 'DataType' type in attributes, you must set data_type of kernel manually."
                attr_data_type_count = attr_data_type_count + 1

        # preprocess kernel configures
        kernel_select_code = ""
        if kernel['backend'] is not None:
            if '>' in kernel['backend']:
                vars_list = kernel['backend'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{self.api} api: The number of params to set backend with '>' only allows 2, but received {len(vars_list)}."
                assert (vars_list[0].strip() in attrs['names']) and (attrs['attr_info'][vars_list[0].strip()][0] == 'Backend'), \
                    f"{self.api} api: When use '>' to set kernel backend, the first param should be a attribute with Backend type."
                kernel_select_code = kernel_select_code + f"""
  kernel_backend = ParseBackendWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                args_str = ""
                for ele in kernel['backend'].split(','):
                    args_str = args_str + ele.strip() + ', '
                kernel_select_code = kernel_select_code + f"""
  kernel_backend = ParseBackend({args_str[:-2]});
"""

        if kernel['layout'] is not None:
            if '>' in kernel['layout']:
                vars_list = kernel['layout'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{self.api} api: The number of params to set layout with '>' only allows 2, but received {len(vars_list)}."
                assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataLayout', \
                    f"{self.api} api: When use '>' to set kernel layout, the first param should be a attribute with DataLayout type."
                kernel_select_code = kernel_select_code + f"""
  kernel_layout = ParseLayoutWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                vars_list = kernel['layout'].split(',')
                assert len(
                    vars_list
                ) == 1, f"{self.api} api: The number of params to set layout must be 1, but received {len(vars_list)}."
                kernel_select_code = kernel_select_code + f"""
  kernel_layout = ParseLayout({vars_list[0].strip()});
"""

        if kernel['data_type'] is not None:
            if '>' in kernel['data_type']:
                vars_list = kernel['data_type'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{self.api} api: The number of params to set data_type with '>' only allows 2, but received {len(vars_list)}."
                assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataType', \
                    f"{self.api} api: When use '>' to set kernel data_type, the first param should be a attribute with DataType type."
                kernel_select_code = kernel_select_code + f"""
  kernel_data_type = ParseDataTypeWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                vars_list = kernel['data_type'].split(',')
                assert len(
                    vars_list
                ) == 1, f"{self.api} api: The number of params to set data_type only allows 2, but received {len(vars_list)}."
                kernel_select_code = kernel_select_code + f"""
  kernel_data_type = ParseDataType({vars_list[0].strip()});
"""

        if len(input_names) == 0:
            assert attr_backend_count > 0 and attr_layout_count > 0 and attr_data_type_count > 0, \
                f"{self.api} api: When there is no input tensor, the args must have 'Backend', 'DataLayout' and 'DataType'."

        kernel_select_args = ""
        for input_name in input_names:
            kernel_select_args = kernel_select_args + input_name + ", "

        if len(kernel_select_args) > 2:
            kernel_select_args = kernel_select_args[:-2]

        kernel_select_code = kernel_key_item_init + kernel_select_code

        if len(input_names) > 0:
            kernel_select_code = kernel_select_code + f"""
  if (kernel_backend == Backend::UNDEFINED 
        || kernel_layout == DataLayout::UNDEFINED
        || kernel_data_type == DataType::UNDEFINED ) {{
    auto kernel_key_set = ParseKernelKeyByInputArgs({kernel_select_args});
    auto kernel_key = kernel_key_set.GetHigestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {{
      kernel_backend = kernel_key.backend();
    }}
    if (kernel_layout == DataLayout::UNDEFINED) {{
      kernel_layout = kernel_key.layout();
    }}
    if (kernel_data_type == DataType::UNDEFINED) {{
      kernel_data_type = kernel_key.dtype();
    }}
  }}"""

        kernel_select_code = kernel_select_code + f"""
  auto kernel = pten::KernelFactory::Instance().SelectKernelOrThrowError(
      "{kernel['func']}", {{kernel_backend, kernel_layout, kernel_data_type}});
  VLOG(6) << "{self.api} API kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]";
  VLOG(6) << "{self.api} API kernel: " << kernel;"""

        return kernel_select_code

    def gene_infer_meta(self, input_names, attr_names, infer_meta) -> str:
        infer_meta_params = infer_meta['param'] if infer_meta[
            'param'] is not None else input_names + attr_names
        param_code = ""
        for param in infer_meta_params:
            if param in input_names:
                param_code = param_code + self.prefix_tensor_name + param + "->meta(), "
            elif param in attr_names:
                param_code = param_code + param + ", "
            elif isinstance(param, str):
                param_code = param_code + "\"" + param + "\", "
            elif isinstance(param, bool):
                param_code = param_code + str(param).lower() + ", "
            else:
                param_code = param_code + str(param) + ", "

        param_code = param_code[:-2]
        return f"""
  auto out_meta = pten::{infer_meta['func']}({param_code});
"""

    def gene_kernel_context(self, input_names, attrs, infer_meta, kernel_param):
        attr_names = attrs['names']
        if kernel_param is None:
            kernel_param = input_names + attr_names

        input_code_str = ""
        attr_code_str = ""
        for param in kernel_param:
            if param in input_names:
                # set input for kernel_context
                input_code_str = input_code_str + f"""
  auto {self.prefix_tensor_name}{param} = std::dynamic_pointer_cast<pten::DenseTensor>({param}.impl());
  kernel_context.EmplaceBackInput({self.prefix_tensor_name}{param});"""

            elif param in attr_names:
                # set attr for kernel_context
                if 'ScalarArray' in attrs['attr_info'][param][0]:
                    param = 'pten::ScalarArray(' + param + ')'
                elif 'Scalar' in attrs['attr_info'][param][0]:
                    param = 'pten::Scalar(' + param + ')'
                attr_code_str = attr_code_str + f"""
  kernel_context.EmplaceBackAttr({param});"""

            elif isinstance(param, bool):
                attr_code_str = attr_code_str + f"""
  kernel_context.EmplaceBackAttr({str(param).lower()});"""

            else:
                attr_code_str = attr_code_str + f"""
  kernel_context.EmplaceBackAttr({param});"""

        return f"""
  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);
  auto kernel_context = pten::KernelContext(dev_ctx);
{input_code_str}
{attr_code_str}
{self.gene_infer_meta(input_names, attr_names, infer_meta)}
  const auto allocator =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          pten::TransToFluidPlace(kernel_backend));
  auto dense_out = std::make_shared<pten::DenseTensor>(allocator, out_meta);
  kernel_context.EmplaceBackOutput(dense_out);

  Tensor out;
  out.set_impl(dense_out);"""

    def gene_api_code(self):
        if self.is_base_api:
            return f"""
315
PADDLE_API {self.output} {self.api}({self.args["args_define"]}) {{
316 317 318 319 320 321 322 323 324 325
{self.gene_kernel_select(self.args['inputs']['names'], self.args['attrs'], self.kernel)}
{self.gene_kernel_context(self.args['inputs']['names'], self.args['attrs'], self.infer_meta, self.kernel['param'])}

  kernel(&kernel_context);
  return out;
}}
"""

        else:
            return f"""
326
PADDLE_API {self.output} {self.api}({self.args["args_define"]}) {{
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
  return {self.invoke};
}}
"""


def header_include():
    return """
#include "paddle/pten/api/include/tensor.h"
#include "paddle/pten/common/scalar.h"
#include "paddle/pten/common/scalar_array.h"
"""


def source_include(header_file_path):
    return f"""
#include "{header_file_path}"
#include <memory>

#include "glog/logging.h"

#include "paddle/pten/api/lib/api_registry.h"
#include "paddle/pten/api/lib/kernel_dispatch.h"
#include "paddle/pten/api/lib/utils/allocator.h"
#include "paddle/pten/core/kernel_registry.h"
#include "paddle/pten/include/core.h"
#include "paddle/pten/include/infermeta.h"
"""


def module_declare():
    return """
PT_DECLARE_MODULE(CreationCPU);
PT_DECLARE_MODULE(LinalgCPU);
PT_DECLARE_MODULE(ManipulationCPU);
PT_DECLARE_MODULE(MathCPU);

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PT_DECLARE_MODULE(CreationCUDA);
PT_DECLARE_MODULE(LinalgCUDA);
PT_DECLARE_MODULE(ManipulationCUDA);
PT_DECLARE_MODULE(MathCUDA);
#endif
"""


def api_register():
    return """
PT_REGISTER_API(Creation);
PT_REGISTER_API(Linalg);
PT_REGISTER_API(Manipulation);
PT_REGISTER_API(Math);
"""


def api_namespace():
    return ("""
namespace paddle {
namespace experimental {

""", """

}  // namespace experimental
}  // namespace paddle
""")


def generate_api(api_yaml_path, header_file_path, source_file_path):

    with open(api_yaml_path, 'r') as f:
        apis = yaml.load(f, Loader=yaml.FullLoader)
    header_file = open(header_file_path, 'w')
    source_file = open(source_file_path, 'w')

    namespace = api_namespace()

    header_file.write("#pragma once\n")
    header_file.write(header_include())
    header_file.write(namespace[0])

    include_header_file = "paddle/pten/api/include/api.h"
    source_file.write(source_include(include_header_file))
    source_file.write(module_declare())
    source_file.write(namespace[0])

    for api in apis:
        api_code = API(api)
        print(api_code.gene_api_declaration())
        header_file.write(api_code.gene_api_declaration())
        source_file.write(api_code.gene_api_code())

    header_file.write(namespace[1])
    source_file.write(namespace[1])
    source_file.write(api_register())

    header_file.close()
    source_file.close()


def main():
    parser = argparse.ArgumentParser(
        description='Generate PaddlePaddle C++ API files')
    parser.add_argument(
        '--api_yaml_path',
        help='path to yaml file directory',
        default='python/paddle/utils/code_gen/api.yaml')
    parser.add_argument(
        '--api_header_path',
        help='output of generated api header code file',
        default='paddle/pten/api/include/api.h')

    parser.add_argument(
        '--api_source_path',
        help='output of generated api source code file',
        default='paddle/pten/api/lib/api.cc')

    options = parser.parse_args()

    api_yaml_path = options.api_yaml_path
    header_file_path = options.api_header_path
    source_file_path = options.api_source_path

    generate_api(api_yaml_path, header_file_path, source_file_path)


if __name__ == '__main__':
    main()