cpu_profiling_cn.html 29.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Python代码的性能分析 &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="索引"
              href="../../genindex.html"/>
        <link rel="search" title="搜索" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_cn.html">新手入门</a></li>
85 86 87
<li class="toctree-l1"><a class="reference internal" href="../../build_and_install/index_cn.html">安装与编译</a></li>
<li class="toctree-l1"><a class="reference internal" href="../index_cn.html">进阶使用</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../dev/index_cn.html">开发标准</a></li>
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
<li class="toctree-l1"><a class="reference internal" href="../../api/index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_cn.html">新手入门</a><ul>
112 113
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/quickstart_cn.html">快速开始</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
114 115
</ul>
</li>
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
<li class="toctree-l1"><a class="reference internal" href="../../build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../build_and_install/pip_install_cn.html">使用pip安装</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../build_and_install/docker_install_cn.html">使用Docker安装运行</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../build_and_install/build_cn.html">用Docker编译和测试PaddlePaddle</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../build_and_install/build_from_source_cn.html">从源码编译</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../index_cn.html">进阶使用</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../cmd_parameter/index_cn.html">命令行参数设置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/index_cn.html">分布式训练</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../cluster/preparations_cn.html">环境准备</a></li>
<li class="toctree-l3"><a class="reference internal" href="../cluster/cmd_argument_cn.html">启动参数说明</a></li>
<li class="toctree-l3"><a class="reference internal" href="../cluster/multi_cluster/index_cn.html">在不同集群中运行</a><ul>
<li class="toctree-l4"><a class="reference internal" href="../cluster/multi_cluster/fabric_cn.html">使用fabric启动集群训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../cluster/multi_cluster/openmpi_cn.html">在OpenMPI集群中提交训练作业</a></li>
<li class="toctree-l4"><a class="reference internal" href="../cluster/multi_cluster/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../cluster/multi_cluster/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../cluster/multi_cluster/k8s_aws_cn.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
139 140 141 142
</ul>
</li>
</ul>
</li>
143 144 145 146
<li class="toctree-l2"><a class="reference internal" href="../capi/index_cn.html">C-API预测库</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../capi/compile_paddle_lib_cn.html">安装与编译C-API预测库</a></li>
<li class="toctree-l3"><a class="reference internal" href="../capi/organization_of_the_inputs_cn.html">输入/输出数据组织</a></li>
<li class="toctree-l3"><a class="reference internal" href="../capi/workflow_of_capi_cn.html">C-API使用流程</a></li>
147 148
</ul>
</li>
149 150 151 152 153
<li class="toctree-l2"><a class="reference internal" href="../rnn/index_cn.html">RNN相关模型</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../rnn/rnn_config_cn.html">RNN配置</a></li>
<li class="toctree-l3"><a class="reference internal" href="../rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
154 155
</ul>
</li>
156
<li class="toctree-l2"><a class="reference internal" href="gpu_profiling_cn.html">GPU性能调优</a></li>
157 158
</ul>
</li>
159 160 161
<li class="toctree-l1"><a class="reference internal" href="../../dev/index_cn.html">开发标准</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../dev/write_docs_cn.html">如何贡献文档</a></li>
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_cn.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/model_configs.html">模型配置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">数据访问</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/data/image.html">Image Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/data/dataset.html">Dataset</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">训练与应用</a></li>
182
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/fluid.html">Fluid</a><ul>
183 184 185 186 187 188 189 190 191 192 193
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/layers.html">layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/data_feeder.html">data_feeder</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/executor.html">executor</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/initializer.html">initializer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/evaluator.html">evaluator</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/nets.html">nets</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/optimizer.html">optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/param_attr.html">param_attr</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/profiler.html">profiler</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/regularizer.html">regularizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/io.html">io</a></li>
194 195
</ul>
</li>
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../faq/build_and_install/index_cn.html">编译安装与单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/model/index_cn.html">模型配置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/parameter/index_cn.html">参数设置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/local/index_cn.html">本地训练与预测</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/cluster/index_cn.html">集群训练与预测</a></li>
</ul>
</li>
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>Python代码的性能分析</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <p>此教程会介绍如何使用Python的cProfile包、Python库yep、Google perftools来进行性能分析 (profiling) 与调优(performance tuning)。</p>
<p>Profling 指发现性能瓶颈。系统中的瓶颈可能和程序员开发过程中想象的瓶颈相去甚远。Tuning 指消除瓶颈。性能优化的过程通常是不断重复地 profiling 和 tuning。</p>
<p>PaddlePaddle 用户一般通过调用 Python API 编写深度学习程序。大部分 Python API 调用用 C++ 写的 libpaddle.so。所以 PaddlePaddle 的性能分析与调优分为两个部分:</p>
<ul class="simple">
<li>Python 代码的性能分析</li>
<li>Python 与 C++ 混合代码的性能分析</li>
</ul>
<div class="section" id="python">
<span id="python"></span><h1>Python代码的性能分析<a class="headerlink" href="#python" title="永久链接至标题"></a></h1>
<div class="section" id="">
<span id="id1"></span><h2>生成性能分析文件<a class="headerlink" href="#" title="永久链接至标题"></a></h2>
<p>Python标准库中提供了性能分析的工具包,<a class="reference external" href="https://docs.python.org/2/library/profile.html">cProfile</a>。生成Python性能分析的命令如下:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>python -m cProfile -o profile.out main.py
</pre></div>
</div>
<p>其中 <code class="docutils literal"><span class="pre">main.py</span></code> 是我们要分析的程序,<code class="docutils literal"><span class="pre">-o</span></code>标识了一个输出的文件名,用来存储本次性能分析的结果。如果不指定这个文件,<code class="docutils literal"><span class="pre">cProfile</span></code>会打印到标准输出。</p>
</div>
<div class="section" id="">
<span id="id2"></span><h2>查看性能分析文件<a class="headerlink" href="#" title="永久链接至标题"></a></h2>
<p><code class="docutils literal"><span class="pre">cProfile</span></code> 在main.py 运行完毕后输出<code class="docutils literal"><span class="pre">profile.out</span></code>。我们可以使用<a class="reference external" href="https://github.com/ymichael/cprofilev"><code class="docutils literal"><span class="pre">cprofilev</span></code></a>来查看性能分析结果。<code class="docutils literal"><span class="pre">cprofilev</span></code>是一个Python的第三方库。使用它会开启一个HTTP服务,将性能分析结果以网页的形式展示出来:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>cprofilev -a <span class="m">0</span>.0.0.0 -p <span class="m">3214</span> -f profile.out main.py
</pre></div>
</div>
<p>其中<code class="docutils literal"><span class="pre">-a</span></code>标识HTTP服务绑定的IP。使用<code class="docutils literal"><span class="pre">0.0.0.0</span></code>允许外网访问这个HTTP服务。<code class="docutils literal"><span class="pre">-p</span></code>标识HTTP服务的端口。<code class="docutils literal"><span class="pre">-f</span></code>标识性能分析的结果文件。<code class="docutils literal"><span class="pre">main.py</span></code>标识被性能分析的源文件。</p>
<p>用Web浏览器访问对应网址,即可显示性能分析的结果:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span>   <span class="n">ncalls</span>  <span class="n">tottime</span>  <span class="n">percall</span>  <span class="n">cumtime</span>  <span class="n">percall</span> <span class="n">filename</span><span class="p">:</span><span class="n">lineno</span><span class="p">(</span><span class="n">function</span><span class="p">)</span>
        <span class="mi">1</span>    <span class="mf">0.284</span>    <span class="mf">0.284</span>   <span class="mf">29.514</span>   <span class="mf">29.514</span> <span class="n">main</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">1</span><span class="p">(</span><span class="o">&lt;</span><span class="n">module</span><span class="o">&gt;</span><span class="p">)</span>
     <span class="mi">4696</span>    <span class="mf">0.128</span>    <span class="mf">0.000</span>   <span class="mf">15.748</span>    <span class="mf">0.003</span> <span class="o">/</span><span class="n">home</span><span class="o">/</span><span class="n">yuyang</span><span class="o">/</span><span class="n">perf_test</span><span class="o">/.</span><span class="n">env</span><span class="o">/</span><span class="n">lib</span><span class="o">/</span><span class="n">python2</span><span class="o">.</span><span class="mi">7</span><span class="o">/</span><span class="n">site</span><span class="o">-</span><span class="n">packages</span><span class="o">/</span><span class="n">paddle</span><span class="o">/</span><span class="n">v2</span><span class="o">/</span><span class="n">fluid</span><span class="o">/</span><span class="n">executor</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">20</span><span class="p">(</span><span class="n">run</span><span class="p">)</span>
     <span class="mi">4696</span>   <span class="mf">12.040</span>    <span class="mf">0.003</span>   <span class="mf">12.040</span>    <span class="mf">0.003</span> <span class="p">{</span><span class="n">built</span><span class="o">-</span><span class="ow">in</span> <span class="n">method</span> <span class="n">run</span><span class="p">}</span>
        <span class="mi">1</span>    <span class="mf">0.144</span>    <span class="mf">0.144</span>    <span class="mf">6.534</span>    <span class="mf">6.534</span> <span class="o">/</span><span class="n">home</span><span class="o">/</span><span class="n">yuyang</span><span class="o">/</span><span class="n">perf_test</span><span class="o">/.</span><span class="n">env</span><span class="o">/</span><span class="n">lib</span><span class="o">/</span><span class="n">python2</span><span class="o">.</span><span class="mi">7</span><span class="o">/</span><span class="n">site</span><span class="o">-</span><span class="n">packages</span><span class="o">/</span><span class="n">paddle</span><span class="o">/</span><span class="n">v2</span><span class="o">/</span><span class="fm">__init__</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">14</span><span class="p">(</span><span class="o">&lt;</span><span class="n">module</span><span class="o">&gt;</span><span class="p">)</span>
</pre></div>
</div>
<p>每一列的含义是:</p>
<p>| 列名 | 含义 |
| &#8212; | &#8212; |
| ncalls | 函数的调用次数 |
| tottime | 函数实际使用的总时间。该时间去除掉本函数调用其他函数的时间 |
| percall | tottime的每次调用平均时间 |
| cumtime | 函数总时间。包含这个函数调用其他函数的时间 |
| percall | cumtime的每次调用平均时间 |
| filename:lineno(function) | 文件名, 行号,函数名 |</p>
</div>
<div class="section" id="">
<span id="id3"></span><h2>寻找性能瓶颈<a class="headerlink" href="#" title="永久链接至标题"></a></h2>
<p>通常<code class="docutils literal"><span class="pre">tottime</span></code><code class="docutils literal"><span class="pre">cumtime</span></code>是寻找瓶颈的关键指标。这两个指标代表了某一个函数真实的运行时间。</p>
<p>将性能分析结果按照tottime排序,效果如下:</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>     4696   12.040    0.003   12.040    0.003 {built-in method run}
   300005    0.874    0.000    1.681    0.000 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/v2/dataset/mnist.py:38(reader)
   107991    0.676    0.000    1.519    0.000 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/v2/fluid/framework.py:219(__init__)
     4697    0.626    0.000    2.291    0.000 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/v2/fluid/framework.py:428(sync_with_cpp)
        1    0.618    0.618    0.618    0.618 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/v2/fluid/__init__.py:1(&lt;module&gt;)
</pre></div>
</div>
<p>可以看到最耗时的函数是C++端的<code class="docutils literal"><span class="pre">run</span></code>函数。这需要联合我们第二节<code class="docutils literal"><span class="pre">Python</span></code><code class="docutils literal"><span class="pre">C++</span></code>混合代码的性能分析来进行调优。而<code class="docutils literal"><span class="pre">sync_with_cpp</span></code>函数的总共耗时很长,每次调用的耗时也很长。于是我们可以点击<code class="docutils literal"><span class="pre">sync_with_cpp</span></code>的详细信息,了解其调用关系。</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>Called By:

   Ordered by: internal time
   List reduced from 4497 to 2 due to restriction &lt;&#39;sync_with_cpp&#39;&gt;

Function                                                                                                 was called by...
                                                                                                             ncalls  tottime  cumtime
/home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/v2/fluid/framework.py:428(sync_with_cpp)  &lt;-    4697    0.626    2.291  /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/v2/fluid/framework.py:562(sync_with_cpp)
/home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/v2/fluid/framework.py:562(sync_with_cpp)  &lt;-    4696    0.019    2.316  /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/v2/fluid/framework.py:487(clone)
                                                                                                                  1    0.000    0.001  /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/v2/fluid/framework.py:534(append_backward)


Called:

   Ordered by: internal time
   List reduced from 4497 to 2 due to restriction &lt;&#39;sync_with_cpp&#39;&gt;
</pre></div>
</div>
<p>通常观察热点函数间的调用关系,和对应行的代码,就可以了解到问题代码在哪里。当我们做出性能修正后,再次进行性能分析(profiling)即可检查我们调优后的修正是否能够改善程序的性能。</p>
</div>
</div>
<div class="section" id="pythonc">
<span id="pythonc"></span><h1>Python与C++混合代码的性能分析<a class="headerlink" href="#pythonc" title="永久链接至标题"></a></h1>
<div class="section" id="">
<span id="id4"></span><h2>生成性能分析文件<a class="headerlink" href="#" title="永久链接至标题"></a></h2>
<p>C++的性能分析工具非常多。常见的包括<code class="docutils literal"><span class="pre">gprof</span></code>, <code class="docutils literal"><span class="pre">valgrind</span></code>, <code class="docutils literal"><span class="pre">google-perftools</span></code>。但是调试Python中使用的动态链接库与直接调试原始二进制相比增加了很多复杂度。幸而Python的一个第三方库<code class="docutils literal"><span class="pre">yep</span></code>提供了方便的和<code class="docutils literal"><span class="pre">google-perftools</span></code>交互的方法。于是这里使用<code class="docutils literal"><span class="pre">yep</span></code>进行Python与C++混合代码的性能分析</p>
<p>使用<code class="docutils literal"><span class="pre">yep</span></code>前需要安装<code class="docutils literal"><span class="pre">google-perftools</span></code><code class="docutils literal"><span class="pre">yep</span></code>包。ubuntu下安装命令为</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>apt update
apt install libgoogle-perftools-dev
pip install yep
</pre></div>
</div>
<p>安装完毕后,我们可以通过</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>python -m yep -v main.py
</pre></div>
</div>
<p>生成性能分析文件。生成的性能分析文件为<code class="docutils literal"><span class="pre">main.py.prof</span></code></p>
<p>命令行中的<code class="docutils literal"><span class="pre">-v</span></code>指定在生成性能分析文件之后,在命令行显示分析结果。我们可以在命令行中简单的看一下生成效果。因为C++与Python不同,编译时可能会去掉调试信息,运行时也可能因为多线程产生混乱不可读的性能分析结果。为了生成更可读的性能分析结果,可以采取下面几点措施:</p>
<ol class="simple">
<li>编译时指定<code class="docutils literal"><span class="pre">-g</span></code>生成调试信息。使用cmake的话,可以将CMAKE_BUILD_TYPE指定为<code class="docutils literal"><span class="pre">RelWithDebInfo</span></code></li>
<li>编译时一定要开启优化。单纯的<code class="docutils literal"><span class="pre">Debug</span></code>编译性能会和<code class="docutils literal"><span class="pre">-O2</span></code>或者<code class="docutils literal"><span class="pre">-O3</span></code>有非常大的差别。<code class="docutils literal"><span class="pre">Debug</span></code>模式下的性能测试是没有意义的。</li>
<li>运行性能分析的时候,先从单线程开始,再开启多线程,进而多机。毕竟单线程调试更容易。可以设置<code class="docutils literal"><span class="pre">OMP_NUM_THREADS=1</span></code>这个环境变量关闭openmp优化。</li>
</ol>
</div>
<div class="section" id="">
<span id="id5"></span><h2>查看性能分析文件<a class="headerlink" href="#" title="永久链接至标题"></a></h2>
<p>在运行完性能分析后,会生成性能分析结果文件。我们可以使用<a class="reference external" href="https://github.com/google/pprof"><code class="docutils literal"><span class="pre">pprof</span></code></a>来显示性能分析结果。注意,这里使用了用<code class="docutils literal"><span class="pre">Go</span></code>语言重构后的<code class="docutils literal"><span class="pre">pprof</span></code>,因为这个工具具有web服务界面,且展示效果更好。</p>
<p>安装<code class="docutils literal"><span class="pre">pprof</span></code>的命令和一般的<code class="docutils literal"><span class="pre">Go</span></code>程序是一样的,其命令如下:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>go get github.com/google/pprof
</pre></div>
</div>
<p>进而我们可以使用如下命令开启一个HTTP服务:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>pprof -http<span class="o">=</span><span class="m">0</span>.0.0.0:3213 <span class="sb">`</span>which python<span class="sb">`</span>  ./main.py.prof
</pre></div>
</div>
<p>这行命令中,<code class="docutils literal"><span class="pre">-http</span></code>指开启HTTP服务。<code class="docutils literal"><span class="pre">which</span> <span class="pre">python</span></code>会产生当前Python二进制的完整路径,进而指定了Python可执行文件的路径。<code class="docutils literal"><span class="pre">./main.py.prof</span></code>输入了性能分析结果。</p>
<p>访问对应的网址,我们可以查看性能分析的结果。结果如下图所示:</p>
<p><img alt="result" src="../../_images/pprof_1.png" /></p>
</div>
<div class="section" id="">
<span id="id6"></span><h2>寻找性能瓶颈<a class="headerlink" href="#" title="永久链接至标题"></a></h2>
<p>与寻找Python代码的性能瓶颈类似,寻找Python与C++混合代码的性能瓶颈也是要看<code class="docutils literal"><span class="pre">tottime</span></code><code class="docutils literal"><span class="pre">cumtime</span></code>。而<code class="docutils literal"><span class="pre">pprof</span></code>展示的调用图也可以帮助我们发现性能中的问题。</p>
<p>例如下图中,</p>
<p><img alt="kernel_perf" src="../../_images/pprof_2.png" /></p>
<p>在一次训练中,乘法和乘法梯度的计算占用2%-4%左右的计算时间。而<code class="docutils literal"><span class="pre">MomentumOp</span></code>占用了17%左右的计算时间。显然,<code class="docutils literal"><span class="pre">MomentumOp</span></code>的性能有问题。</p>
<p><code class="docutils literal"><span class="pre">pprof</span></code>中,对于性能的关键路径都做出了红色标记。先检查关键路径的性能问题,再检查其他部分的性能问题,可以更有次序的完成性能的优化。</p>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
      <script type="text/javascript" src="../../_static/translations.js"></script>
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
       
  

  
  
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../_static/js/paddle_doc_init.js"></script> 

</body>
</html>