selected_rows.html 21.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Design Doc: Selected Rows &mdash; PaddlePaddle  documentation</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="Index"
              href="../genindex.html"/>
        <link rel="search" title="Search" href="../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_en.html">GET STARTED</a></li>
85
<li class="toctree-l1"><a class="reference internal" href="../build_and_install/index_en.html">Install and Build</a></li>
86
<li class="toctree-l1"><a class="reference internal" href="../howto/index_en.html">HOW TO</a></li>
87
<li class="toctree-l1"><a class="reference internal" href="../dev/index_en.html">Development</a></li>
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
<li class="toctree-l1"><a class="reference internal" href="../api/index_en.html">API</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_en.html">GET STARTED</a><ul>
111
<li class="toctree-l2"><a class="reference internal" href="../getstarted/quickstart_en.html">Quick Start</a></li>
112 113
</ul>
</li>
114 115 116 117 118
<li class="toctree-l1"><a class="reference internal" href="../build_and_install/index_en.html">Install and Build</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/pip_install_en.html">Install Using pip</a></li>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/docker_install_en.html">Run in Docker Containers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/build_en.html">Build using Docker</a></li>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/build_from_source_en.html">Build from Sources</a></li>
119 120 121
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_en.html">HOW TO</a><ul>
122 123 124 125
<li class="toctree-l2"><a class="reference internal" href="../howto/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
126 127
</ul>
</li>
128 129 130 131 132 133 134 135
<li class="toctree-l2"><a class="reference internal" href="../howto/cluster/index_en.html">Distributed Training</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/preparations_en.html">Preparations</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/cmd_argument_en.html">Command-line arguments</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/multi_cluster/index_en.html">Use different clusters</a><ul>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/fabric_en.html">Cluster Training Using Fabric</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/openmpi_en.html">Cluster Training Using OpenMPI</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_en.html">PaddlePaddle On Kubernetes</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_aws_en.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
136 137
</ul>
</li>
138 139 140 141
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/rnn_config_en.html">RNN Configuration</a></li>
142 143 144 145 146
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
147 148 149 150 151 152
<li class="toctree-l1"><a class="reference internal" href="../dev/index_en.html">Development</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../dev/new_layer_en.html">Write New Layers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../dev/contribute_to_paddle_en.html">Contribute Code</a></li>
<li class="toctree-l2"><a class="reference internal" href="../dev/write_docs_en.html">Contribute Documentation</a></li>
</ul>
</li>
153 154 155 156 157 158 159 160 161 162 163
<li class="toctree-l1"><a class="reference internal" href="../api/index_en.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/model_configs.html">Model Configuration</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
164 165 166 167 168 169
<li class="toctree-l2"><a class="reference internal" href="../api/v2/data.html">Data Reader Interface and DataSets</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/data/image.html">Image Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/data/dataset.html">Dataset</a></li>
</ul>
</li>
170
<li class="toctree-l2"><a class="reference internal" href="../api/v2/run_logic.html">Training and Inference</a></li>
171
<li class="toctree-l2"><a class="reference internal" href="../api/v2/fluid.html">Fluid</a><ul>
172 173 174 175 176 177 178 179 180 181 182
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/layers.html">layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/data_feeder.html">data_feeder</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/executor.html">executor</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/initializer.html">initializer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/evaluator.html">evaluator</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/nets.html">nets</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/optimizer.html">optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/param_attr.html">param_attr</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/profiler.html">profiler</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/regularizer.html">regularizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/io.html">io</a></li>
183 184
</ul>
</li>
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
</ul>
</li>
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>Design Doc: Selected Rows</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="design-doc-selected-rows">
<span id="design-doc-selected-rows"></span><h1>Design Doc: Selected Rows<a class="headerlink" href="#design-doc-selected-rows" title="Permalink to this headline"></a></h1>
218
<p><code class="docutils literal"><span class="pre">SelectedRows</span></code> is a type of sparse tensor data type, which is designed to support <code class="docutils literal"><span class="pre">embedding</span></code> operators. The gradient of embedding table is a sparse tensor. Only a few rows are non-zero values in this tensor. It is straight-forward to represent a sparse tensor by the following sparse tensor data structure:</p>
219 220 221 222 223 224 225 226
<div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">SelectedRows</span> <span class="p">{</span>
 <span class="k">private</span><span class="o">:</span>
  <span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span> <span class="n">rows_</span><span class="p">;</span>
  <span class="n">Tensor</span> <span class="n">value_</span><span class="p">;</span>
  <span class="kt">int</span> <span class="n">height_</span><span class="p">;</span>
<span class="p">};</span>
</pre></div>
</div>
227
<p>The field <code class="docutils literal"><span class="pre">height_</span></code> is the first dimension of <code class="docutils literal"><span class="pre">SelectedRows</span></code>. The <code class="docutils literal"><span class="pre">rows</span></code> are the indices of the non-zero rows of <code class="docutils literal"><span class="pre">SelectedRows</span></code>. The <code class="docutils literal"><span class="pre">value_</span></code> field is an N-dim tensor of shape <code class="docutils literal"><span class="pre">[rows.size()</span> <span class="pre">/*</span> <span class="pre">NUM_ROWS</span> <span class="pre">*/,</span> <span class="pre">...]</span></code>, which supplies values for each row. The dimension of <code class="docutils literal"><span class="pre">SelectedRows</span></code> satisfies <code class="docutils literal"><span class="pre">[height_]</span> <span class="pre">+</span> <span class="pre">value_.shape[1:]</span></code>.</p>
228 229 230 231 232 233 234 235 236
<p>Suppose that a SelectedRows-typed variable <code class="docutils literal"><span class="pre">x</span></code> has many rows, but only two of them have values &#8211; row 73 is <code class="docutils literal"><span class="pre">[1,</span> <span class="pre">2]</span></code> and row 84 is <code class="docutils literal"><span class="pre">[3,</span> <span class="pre">4]</span></code>, the <code class="docutils literal"><span class="pre">SelectedRows</span></code> representation would be:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">SelectedRow</span> <span class="p">{</span>
  <span class="n">rows</span> <span class="o">=</span> <span class="p">[</span><span class="mi">73</span><span class="p">,</span> <span class="mi">84</span><span class="p">],</span>
  <span class="n">value</span> <span class="o">=</span> <span class="p">[[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">]]</span>
<span class="p">}</span>
</pre></div>
</div>
<div class="section" id="selectedrows-in-protobuf">
<span id="selectedrows-in-protobuf"></span><h2>SelectedRows in Protobuf<a class="headerlink" href="#selectedrows-in-protobuf" title="Permalink to this headline"></a></h2>
237
<p><code class="docutils literal"><span class="pre">SelectedRows</span></code> is a type of <code class="docutils literal"><span class="pre">Variable</span></code>. <code class="docutils literal"><span class="pre">VarDesc</span></code> in protobuf should describe the <code class="docutils literal"><span class="pre">SelectedRows</span></code> information. Only the tensor dimension of a <code class="docutils literal"><span class="pre">SelectedRows</span></code> will be described in compile-time because the <code class="docutils literal"><span class="pre">rows_</span></code> and <code class="docutils literal"><span class="pre">value_</span></code> are dependent on the training data.
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
So we use <code class="docutils literal"><span class="pre">TensorDesc</span></code> to unify <code class="docutils literal"><span class="pre">data_type</span></code> and <code class="docutils literal"><span class="pre">dims</span></code>. A LodTensorDesc contains a <code class="docutils literal"><span class="pre">TensorDesc</span></code> and <code class="docutils literal"><span class="pre">lod_level</span></code>. The description of <code class="docutils literal"><span class="pre">SelectedRows</span></code> is a Tensor description.</p>
<div class="highlight-proto"><div class="highlight"><pre><span></span><span class="kd">message</span> <span class="nc">TensorDesc</span> <span class="p">{</span>
  <span class="k">required</span> <span class="n">DataType</span> <span class="na">data_type</span> <span class="o">=</span> <span class="mi">1</span><span class="p">;</span>
  <span class="k">repeated</span> <span class="kt">int64</span> <span class="na">dims</span> <span class="o">=</span> <span class="mi">2</span><span class="p">;</span> <span class="c1">// [UNK, 640, 480] is saved as [-1, 640, 480]</span>
<span class="p">}</span>

<span class="kd">message</span> <span class="nc">LodTensorDesc</span> <span class="p">{</span>
  <span class="k">required</span> <span class="n">TensorDesc</span> <span class="na">tensor</span> <span class="o">=</span> <span class="mi">1</span><span class="p">;</span>
  <span class="k">optional</span> <span class="n">int</span> <span class="na">lod_level</span> <span class="o">=</span> <span class="mi">2</span><span class="p">;</span>
<span class="p">}</span>

<span class="kd">message</span> <span class="nc">VarDesc</span> <span class="p">{</span>
  <span class="k">required</span> <span class="kt">string</span> <span class="na">name</span> <span class="o">=</span> <span class="mi">1</span><span class="p">;</span>
  <span class="kd">enum</span> <span class="n">VarType</span> <span class="p">{</span> 
    <span class="na">LOD_TENSOR</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span>
    <span class="na">SELECTED_ROWS</span> <span class="o">=</span> <span class="mi">1</span><span class="p">;</span>
  <span class="p">}</span>
  <span class="k">required</span> <span class="n">VarType</span> <span class="na">type</span> <span class="o">=</span> <span class="mi">2</span><span class="p">;</span>
  <span class="k">optional</span> <span class="n">LodTensorDesc</span> <span class="na">lod_desc</span> <span class="o">=</span> <span class="mi">3</span><span class="p">;</span>
  <span class="k">optional</span> <span class="n">TensorDesc</span> <span class="na">selected_rows_desc</span> <span class="o">=</span> <span class="mi">4</span><span class="p">;</span>
  <span class="k">optional</span> <span class="kt">bool</span> <span class="na">persistable</span> <span class="o">=</span> <span class="mi">5</span> <span class="p">[</span> <span class="k">default</span> <span class="o">=</span> <span class="kc">false</span> <span class="p">];</span>
<span class="p">}</span>
</pre></div>
</div>
</div>
<div class="section" id="infershape-for-selected-rows">
<span id="infershape-for-selected-rows"></span><h2>InferShape for Selected Rows<a class="headerlink" href="#infershape-for-selected-rows" title="Permalink to this headline"></a></h2>
265
<p>Just like <code class="docutils literal"><span class="pre">LoD</span></code> information, <code class="docutils literal"><span class="pre">InferShape</span></code> method will infer the output tensor type as well. The operator should decide whether its output is a <code class="docutils literal"><span class="pre">SelectedRows</span></code> or <code class="docutils literal"><span class="pre">Dense</span></code> tensor.</p>
266 267 268 269 270 271 272 273 274 275
<p>For example, the gradient operator of <code class="docutils literal"><span class="pre">TableLookup</span></code> will always generate <code class="docutils literal"><span class="pre">SelectedRows</span></code>. Its <code class="docutils literal"><span class="pre">InferShape</span></code> method should be like following</p>
<div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="kt">void</span> <span class="n">TableLookupGrad</span><span class="o">::</span><span class="n">InferShape</span><span class="p">(</span><span class="n">context</span><span class="p">)</span> <span class="p">{</span>
  <span class="p">...</span>
  <span class="n">context</span><span class="p">.</span><span class="n">SetDataType</span><span class="p">(</span><span class="s">&quot;Embedding.Grad&quot;</span><span class="p">,</span> <span class="n">kSelectedRows</span><span class="p">);</span>
<span class="p">}</span>
</pre></div>
</div>
</div>
<div class="section" id="sparse-operators">
<span id="sparse-operators"></span><h2>Sparse Operators<a class="headerlink" href="#sparse-operators" title="Permalink to this headline"></a></h2>
276
<p>There are several operators that need to be written to support <code class="docutils literal"><span class="pre">SelectedRows</span></code>. These are:</p>
277
<ol class="simple">
278
<li>Operators which generate <code class="docutils literal"><span class="pre">SelectedRows</span></code> gradient. e.g. Gradient of <code class="docutils literal"><span class="pre">TableLookupOp</span></code>.</li>
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
<li>Optimize operators which support <code class="docutils literal"><span class="pre">SelectedRows</span></code> gradient. e.g. <code class="docutils literal"><span class="pre">SGD</span></code> or <code class="docutils literal"><span class="pre">AdaGrad</span></code> for <code class="docutils literal"><span class="pre">SelectedRows</span></code>. However, there should be only one <code class="docutils literal"><span class="pre">SGD</span></code> operator. <code class="docutils literal"><span class="pre">OpWithKernel::Run</span></code> should select a suitable kernel for both <code class="docutils literal"><span class="pre">dense</span></code> tensor or <code class="docutils literal"><span class="pre">SelectedRows</span></code>.</li>
</ol>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../_static/jquery.js"></script>
      <script type="text/javascript" src="../_static/underscore.js"></script>
      <script type="text/javascript" src="../_static/doctools.js"></script>
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
       
  

  
  
    <script type="text/javascript" src="../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../_static/js/paddle_doc_init.js"></script> 

</body>
</html>