util_factory.py 24.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fleet Utils."""
"""distributed operations"""
"""basic collective operations in python"""
"""remote file system"""

19
from ..utils.fs import FS, LocalFS, HDFSClient
20 21 22 23 24 25 26 27 28 29 30
from paddle.fluid.proto import framework_pb2
from paddle.fluid.framework import Program
from paddle.fluid import debugger
from google.protobuf import text_format
import paddle.fluid as fluid
from collections import OrderedDict
from paddle.fluid import core
import subprocess
import os
import numpy as np
__all__ = ['UtilBase']
31

32 33

class UtilFactory(object):
34
    def _create_util(self, context=None):
35
        util = UtilBase()
36 37 38 39
        if context is not None and "valid_strategy" in context:
            util._set_strategy(context["valid_strategy"])
        if context is not None and "role_maker" in context:
            util._set_role_maker(context["role_maker"])
40 41 42
        return util


43
class UtilBase(object):
44 45 46 47 48 49 50 51 52
    def __init__(self):
        self.role_maker = None
        self.dist_strategy = None

    def _set_strategy(self, dist_strategy):
        self.dist_strategy = dist_strategy

    def _set_role_maker(self, role_maker):
        self.role_maker = role_maker
53

54
    def _set_file_system(self, fs_client):
55
        assert isinstance(
56 57
            fs_client, FS
        ), "fs_client must be the instance of paddle.distributed.fleet.utils.FS"
58 59
        self.fs_client = fs_client

60
    def all_reduce(self, input, mode="sum", comm_world="worker"):
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
        """
        All reduce `input` between specified collection. This is a distributed API.

        Args:
            input (list|numpy.array): The input variable to do all_reduce between specified collection.
            mode (str): "sum" or "min" or "max".
            comm_world (str, optional): Collection used to execute all_reduce operation. Supported collections incude `worker` , `server` and `all` . The default is `worker` .

        Returns:
            output(Numpy.array|None): A numpy array with the same shape as the `input` .

        Examples:
            .. code-block:: python

                # Save the following code in `train.py` , and then execute the command `fleetrun --server_num 2 --worker_num 2 train.py` .
                from paddle.distributed.fleet.base.util_factory import fleet_util
                import paddle.distributed.fleet as fleet
                from paddle.distributed.fleet import PaddleCloudRoleMaker
                import sys
                import numpy as np

                def train():
                    role = PaddleCloudRoleMaker(
                        is_collective=False,
                        init_gloo=True,
                        path="./tmp_gloo")
                    fleet.init(role)
                    fleet_util._set_role_maker(role)

                    if fleet.is_server():
                        input = [1, 2]
                        output = fleet_util.all_reduce(input, "sum", "server")
                        print(output)
                        # [2, 4]
                    elif fleet.is_worker():
                        input = np.array([3, 4])
                        output = fleet_util.all_reduce(input, "sum", "worker")
                        print(output)
                        # [6, 8]
                    output = fleet_util.all_reduce(input, "sum", "all")
                    print(output)
                    # [8, 12]
                if __name__ == "__main__":
                    train()
        """
106
        return self.role_maker._all_reduce(input, mode, comm_world)
107 108

    def barrier(self, comm_world="worker"):
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
        """
        Barrier between specified collection.

        Args:
            comm_world (str, optional): Collection used to execute barrier operation. Supported collections incude `worker` , `server` and `all` . The default is `worker` .

        Examples:

            .. code-block:: python
                # Save the following code in `train.py` , and then execute the command `fleetrun --server_num 2 --worker_num 2 train.py` .

                from paddle.distributed.fleet.base.util_factory import fleet_util
                import paddle.distributed.fleet as fleet
                from paddle.distributed.fleet import PaddleCloudRoleMaker
                import sys

                def train():
                    role = PaddleCloudRoleMaker(
                        is_collective=False,
                        init_gloo=True,
                        path="./tmp_gloo")
                    fleet.init(role)
                    fleet_util._set_role_maker(role)

                    if fleet.is_server():
                        fleet_util.barrier("server")
                        print("all server arrive here")
                    elif fleet.is_worker():
                        fleet_util.barrier("worker")
                        print("all server arrive here")
                    fleet_util.barrier("all")
                    print("all servers and workers arrive here")

                if __name__ == "__main__":
                    train()
        """
145
        self.role_maker._barrier(comm_world)
146 147

    def all_gather(self, input, comm_world="worker"):
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
        """
        All gather `input` between specified collection.

        Args:
            input (Int|Float): The input variable to do all_gather between specified collection.
            comm_world (str, optional): Collection used to execute all_reduce operation. Supported collections incude `worker` , `server` and `all` . The default is `worker` .

        Returns:
            output (List): A list of gathered values.

        Examples:

            .. code-block:: python

                # Save the following code in `train.py` , and then execute the command `fleetrun --server_num 2 --worker_num 2 train.py` .
                from paddle.distributed.fleet.base.util_factory import fleet_util
                import paddle.distributed.fleet as fleet
                from paddle.distributed.fleet import PaddleCloudRoleMaker
                import sys

                def train():
                    role = PaddleCloudRoleMaker(
                        is_collective=False,
                        init_gloo=True,
                        path="./tmp_gloo")
                    fleet.init(role)
                    fleet_util._set_role_maker(role)

                    if fleet.is_server():
                        input = fleet.server_index()
                        output = fleet_util.all_gather(input, "server")
                        print(output)
                        # output = [0, 1]
                    elif fleet.is_worker():
                        input = fleet.worker_index()
                        output = fleet_util.all_gather(input, "worker")
                        # output = [0, 1]
                        print(output)
                    output = fleet_util.all_gather(input, "all")
                    print(output)
                    # output = [0, 1, 0, 1]

                if __name__ == "__main__":
                    train()
        """
193 194

        return self.role_maker._all_gather(input, comm_world)
195

196
    def _broadcast(self):
197 198
        pass

199
    def _scatter(self):
200 201 202
        pass

    def get_file_shard(self, files):
203
        """
204 205 206 207 208 209 210 211
        Split files before distributed training, and return filelist assigned to the current trainer.

        .. code-block:: text

            example 1: files is [a, b, c ,d, e]  and trainer_num = 2, then trainer
                    0 gets [a, b, c] and trainer 1 gets [d, e].
            example 2: files is [a, b], and trainer_num = 3, then trainer 0 gets
                    [a], trainer 1 gets [b],  trainer 2 gets []
212

213
        Args:
214
            files(list): File list need to be read.
215

216
        Returns:
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
            List: Files belong to this worker.

        Examples:

            .. code-block:: python

                from paddle.distributed.fleet.base.util_factory import fleet_util
                import paddle.distributed.fleet.base.role_maker as role_maker

                role = role_maker.UserDefinedRoleMaker(
                    is_collective=False,
                    init_gloo=False,
                    current_id=0,
                    role=role_maker.Role.WORKER,
                    worker_endpoints=["127.0.0.1:6003", "127.0.0.1:6004"],
                    server_endpoints=["127.0.0.1:6001", "127.0.0.1:6002"])
                fleet_util._set_role_maker(role)
                files = fleet_util.get_file_shard(["file1", "file2", "file3"])
                # files = ["file1", "file2"]
236 237 238
        """
        if not isinstance(files, list):
            raise TypeError("files should be a list of file need to be read.")
239

240 241
        trainer_id = self.role_maker._worker_index()
        trainers = self.role_maker._worker_num()
242

243 244
        remainder = len(files) % trainers
        blocksize = int(len(files) / trainers)
245

246 247 248
        blocks = [blocksize] * trainers
        for i in range(remainder):
            blocks[i] += 1
249

250 251 252 253 254 255 256 257 258
        trainer_files = [[]] * trainers
        begin = 0
        for i in range(trainers):
            trainer_files[i] = files[begin:begin + blocks[i]]
            begin += blocks[i]

        return trainer_files[trainer_id]

    def print_on_rank(self, message, rank_id):
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
        """
        Woker of rank `rank_id` print some message. 

        Args:
            message(str): Log to be printed.
            rank_id(int): trainer id.

        Examples:

            .. code-block:: python

                from paddle.distributed.fleet.base.util_factory import fleet_util
                import paddle.distributed.fleet.base.role_maker as role_maker

                role = role_maker.UserDefinedRoleMaker(
                    is_collective=False,
                    init_gloo=False,
                    current_id=0,
                    role=role_maker.Role.WORKER,
                    worker_endpoints=["127.0.0.1:6003", "127.0.0.1:6004"],
                    server_endpoints=["127.0.0.1:6001", "127.0.0.1:6002"])
                fleet_util._set_role_maker(role)
                fleet_util.print_on_rank("I'm worker 0", 0)
        """
283
        if self.role_maker._worker_index() != rank_id:
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
            return
        print(message)

    def _save_program(self, program, model_filename='__model__', is_text=False):
        if is_text:
            with open(model_filename, "w") as f:
                f.write(str(program))
        else:
            with open(model_filename, "wb") as f:
                f.write(program.desc.serialize_to_string())

    def _load_program(self, path, is_text):
        def load_program_binary(path):
            """load program from binary string file"""
            with open(path, "rb") as f:
                program_desc_str = f.read()
            return Program.parse_from_string(program_desc_str)

        def load_program_text(path):
            """load program from human-readable text file"""
            with open(path, "r") as f:
                program_desc_text = f.read()

            prog_desc = framework_pb2.ProgramDesc()
            text_format.Merge(program_desc_text, prog_desc)
            return Program.parse_from_string(prog_desc.SerializeToString())

        if is_text:
            return load_program_text(path)
        else:
            return load_program_binary(path)

    def _program_type_trans(self, prog_dir, prog_fn, is_text):
        prog = self._load_program(os.path.join(prog_dir, prog_fn), is_text)
        prog_out_fn = prog_fn + ".bin" if is_text else prog_fn + ".pbtxt"
        self._save_program(prog,
                           os.path.join(prog_dir, prog_out_fn), 1 - is_text)
        return prog_out_fn

    def _visualize_graphviz(self, program, output_dir, output_filename):
        block = program.global_block()
        dot_path = os.path.join(output_dir, output_filename + '.dot')
        pdf_path = os.path.join(output_dir, output_filename + '.pdf')
        debugger.draw_block_graphviz(block, path=dot_path)
        cmd = ["dot", "-Tpdf", dot_path, "-o", pdf_path]
        p = subprocess.Popen(
            cmd,
            stdin=subprocess.PIPE,
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE)
        p.wait()

    def _proto_check(self, config):
        train_prog = self._load_program(config.train_prog_path,
                                        config.is_text_train_program)
        pruned_prog = self._load_program(config.pruned_prog_path,
                                         config.is_text_pruned_program)

        is_match = True

        pruned_vars = [(v.name, v) for v in pruned_prog.list_vars()
                       if fluid.io.is_persistable(v)]
        pruned_vars = OrderedDict(pruned_vars)
        pruned_vars_name = [name for name in pruned_vars]
        print("persistable vars in pruned program: {}".format(pruned_vars_name))

        # feed and fetch op is added in pruned program when pruning, not need to be found in train program
        feed_fetch_type_list = [
            core.VarDesc.VarType.FEED_MINIBATCH, core.VarDesc.VarType.FETCH_LIST
        ]

        for var_name in pruned_vars:
            var = pruned_vars[var_name]
            # feed and fetch op is added in pruned program when pruning, not need to be found in train program
            if var.type in feed_fetch_type_list:
                break
            try:
                train_prog_var = train_prog.global_block().var(var_name)
            except ValueError as e:
                print(
                    "Not find variable '%s' in train program. please check pruning."
                    % var_name)
                is_match = False
                continue
            if var.shape != train_prog_var.shape or var.dtype != train_prog_var.dtype:
                print(
                    "variable: {} not match. in pruned program shape: {} dtype:{}, in train program shape: {} dtype: {}".
                    format(var_name, var.shape, var.dtype, train_prog_var.shape,
                           train_prog_var.dtype))
                is_match = False
        return is_match

    def _params_check(self, config):
        def feed_gen(batch_size, feeded_vars_dims, feeded_vars_filelist):
            def reader(batch_size, fn, dim):
                data = []
                if isinstance(dim, list) or isinstance(dim, tuple):
                    shape = list(dim)
                    _temp = 1
                    for x in dim:
                        _temp = _temp * x
                    dim = _temp
                else:
                    shape = [dim]

                shape = [batch_size] + shape
                dim = dim * batch_size

                for line in open(fn, 'r'):
                    fields = line.strip().split(' ')
                    fields = [float(d) for d in fields]
                    while len(fields) >= dim:
                        tmp = fields[:dim]
                        fields = fields[dim:]
                        data.append(np.array(tmp).reshape(shape))
                return data

            batch_feed = []
            for i, fn in enumerate(feeded_vars_filelist):
                batch_feed.append(reader(batch_size, fn, feeded_vars_dims[i]))
            return batch_feed

        prog = self._load_program(
            os.path.join(config.dump_model_dir, config.dump_program_filename),
            config.is_text_dump_program)
        if config.is_text_dump_program:
            model_filename = self._program_type_trans(
                config.dump_model_dir, config.dump_program_filename,
                config.is_text_dump_program)

        saved_params = [
            v for v in prog.list_vars() if fluid.io.is_persistable(v)
        ]
        print("persistable vars in dump program: {}".format(
            [v.name for v in saved_params]))

        def check_not_expected_ops(prog, not_expected_op_types):
            op_types_set = set()
            for op in prog.global_block().ops:
                if op.type in not_expected_op_types and op.type not in op_types_set:
                    op_types_set.add(op.type)
            return op_types_set

        not_expected_op_types = check_not_expected_ops(prog, ["lookup_table"])
        if len(not_expected_op_types) > 0:
            print(
                "find op type '{}' in program, please check if your program is pruned correctly !".
                format(list(not_expected_op_types)))
            return False

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            inference_program, feed_target_names, fetch_targets = \
                fluid.io.load_inference_model(config.dump_model_dir, exe, model_filename=model_filename,
440
                                              params_filename=config.save_params_filename)
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582

            # check program vars and saved vars shape
            orig_para_shape = {
                each_var.name: tuple(each_var.desc.shape())
                for each_var in saved_params
            }
            for each_var in saved_params:
                var_temp = fluid.global_scope().find_var(each_var.name)
                assert var_temp != None, "can't not find var: " + each_var.name
                new_shape = (np.array(var_temp.get_tensor())).shape
                assert each_var.name in orig_para_shape, each_var.name + "MUST in var list"
                orig_shape = orig_para_shape.get(each_var.name)
                if new_shape != orig_shape:
                    raise RuntimeError(
                        "Shape not matching: the Program requires a parameter with a shape of ({}), "
                        "while the loaded parameter (namely [ {} ]) has a shape of  ({}).".
                        format(orig_shape, each_var.name, new_shape))

            # check feed/fetch vars in program and config
            feed_config = config.feed_config
            fetch_config = config.fetch_config
            fetch_targets_names = [v.name for v in fetch_targets]
            if not feed_target_names:
                print("warning! no feed targets in program.")
            if not fetch_targets_names:
                print("warning! no fetch targets in program.")
            fetch_list = fetch_targets
            feed_name_list = feed_target_names
            if feed_config.feeded_vars_names is not None and feed_target_names != feed_config.feeded_vars_names:
                print(
                    "warning! feed vars in program and config are diff: feed in program: {}. feed in config {}.".
                    format(feed_target_names, feed_config.feeded_vars_names))
                feed_name_list = feed_config.feeded_vars_names
                # remove feed op in inference_program. new feed op will be added in exe.run
                global_block = inference_program.global_block()
                need_to_remove_op_index = []
                for i, op in enumerate(global_block.ops):
                    op.desc.set_is_target(False)
                    if op.type == "feed":  # only remove feed op here
                        need_to_remove_op_index.append(i)
                for index in need_to_remove_op_index[::-1]:
                    global_block._remove_op(index)
            if fetch_config.fetch_vars_names is not None and fetch_targets_names != fetch_config.fetch_vars_names:
                print(
                    "warning! fetch vars in program and config are diff: fetch in program: {}. fetch in config {}.".
                    format(fetch_targets_names, fetch_config.fetch_vars_names))
                fetch_list = [
                    inference_program.global_block().var(i)
                    for i in fetch_config.fetch_vars_names
                ]
                # remove fetch op in inference_program. new fetch op will be added in exe.run
                global_block = inference_program.global_block()
                need_to_remove_op_index = []
                for i, op in enumerate(global_block.ops):
                    op.desc.set_is_target(False)
                    if op.type == "fetch":  # only remove fetch op here
                        need_to_remove_op_index.append(i)
                for index in need_to_remove_op_index[::-1]:
                    global_block._remove_op(index)

            # if fetch_list have lod tensor
            return_numpy = all([v.lod_level == 0 for v in fetch_list])

            # try dump fetch_targets
            feed_tensors = []
            assert len(feed_config.feeded_vars_names) == len(
                feed_config.feeded_vars_dims) == len(
                    feed_config.feeded_vars_types)
            # check program vars and feed tensor shape in config
            for i in range(len(feed_config.feeded_vars_names)):
                var = inference_program.global_block().var(
                    feed_config.feeded_vars_names[i])
                if not isinstance(feed_config.feeded_vars_dims[i],
                                  (list, tuple)):
                    tensor_shape = (feed_config.feeded_vars_dims[i], )
                else:
                    tensor_shape = tuple(feed_config.feeded_vars_dims[i])
                feed_config.feeded_vars_dims[i] = tensor_shape
                var_shape = var.shape[1:]
                if tensor_shape != var_shape:
                    raise RuntimeError(
                        "feed variable '{}' shape not match. infer program  shape: {}. feed tensor shape: {}".
                        format(feed_config.feeded_vars_names[i], var_shape,
                               tensor_shape))

            if not feed_config.feeded_vars_filelist:
                print("generate random feed vars.")
                for i in range(len(feed_config.feeded_vars_names)):
                    var = inference_program.global_block().var(
                        feed_config.feeded_vars_names[i])
                    # create fake feed tensor. if lod_level > 1, should create_lod_tensor()
                    if var.lod_level == 0:
                        feed_tensors.append(
                            np.array(
                                np.random.random(
                                    tuple([config.batch_size] + list(
                                        feed_config.feeded_vars_dims[i]))),
                                dtype=feed_config.feeded_vars_types[i]))
                    elif var.lod_level == 1:
                        t = np.array(
                            np.random.random(
                                tuple([config.batch_size] + list(
                                    feed_config.feeded_vars_dims[i]))),
                            dtype=feed_config.feeded_vars_types[i])
                        feed_tensors.append(
                            fluid.create_lod_tensor(t, [[1] * config.batch_size
                                                        ], place))
                    else:
                        raise RuntimeError(
                            "vars with lod_level >= 2 is not supported now in this infer program check tool."
                        )
                results = exe.run(inference_program,
                                  feed={
                                      name: feed_tensors[i]
                                      for i, name in enumerate(feed_name_list)
                                  },
                                  fetch_list=fetch_list,
                                  return_numpy=return_numpy)
            else:
                print("load feed vars from files: {}.".format(
                    feed_config.feeded_vars_filelist))
                feed_vars = [
                    inference_program.global_block().var(
                        feed_config.feeded_vars_names[i])
                    for i in range(len(feed_config.feeded_vars_names))
                ]
                feeder = fluid.DataFeeder(feed_list=feed_vars, place=place)
                batch_feed = feed_gen(config.batch_size,
                                      feed_config.feeded_vars_dims,
                                      feed_config.feeded_vars_filelist)
                slots = [batch_feed]
                results = exe.run(inference_program,
                                  feed=feeder.feed(slots),
                                  fetch_list=fetch_list,
                                  return_numpy=return_numpy)
            for i, v in enumerate(fetch_list):
                print("fetch_targets name: %s" % v.name)
                print("fetch_targets: {}".format(results[i]))
            return results


fleet_util = UtilFactory()._create_util(None)