eigen.h 5.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yi Wang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

W
wanghuancoder 已提交
17 18
#include <stdint.h>

Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/tensor.h"
Y
Yi Wang 已提交
20 21 22 23 24 25 26 27
#include "unsupported/Eigen/CXX11/Tensor"

namespace paddle {
namespace framework {

// EigenDim converts paddle::platform::DDim into Eigen::DSizes.
template <int D>
struct EigenDim {
Q
qijun 已提交
28
  using Type = Eigen::DSizes<Eigen::DenseIndex, D>;
Y
Yi Wang 已提交
29 30

  static Type From(const DDim& dims) {
31 32 33 34 35
    PADDLE_ENFORCE_EQ(arity(dims), D,
                      platform::errors::InvalidArgument(
                          "Input dimension size should be equal to %d, but "
                          "received dimension size is %d.",
                          arity(dims), D));
Y
Yi Wang 已提交
36
    Type ret;
Q
qijun 已提交
37
    for (int64_t d = 0; d < arity(dims); d++) {
Y
Yi Wang 已提交
38 39 40 41 42 43 44
      ret[d] = dims[d];
    }
    return ret;
  }
};

// Interpret paddle::platform::Tensor as EigenTensor and EigenConstTensor.
45 46
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
Y
Yi Wang 已提交
47
struct EigenTensor {
48 49 50
  // TODO(qijun) Now, default type in unaligned, and we will make a benchmark on
  // the speed of aligned and unaligned version in future.
  using Type = Eigen::TensorMap<Eigen::Tensor<T, D, MajorType, IndexType>>;
Y
Yi Wang 已提交
51 52

  using ConstType =
53
      Eigen::TensorMap<Eigen::Tensor<const T, D, MajorType, IndexType>>;
Y
Yi Wang 已提交
54

D
dzhwinter 已提交
55
  static Type From(Tensor& tensor, DDim dims) {  // NOLINT
Y
Yi Wang 已提交
56 57 58
    return Type(tensor.data<T>(), EigenDim<D>::From(dims));
  }

D
dzhwinter 已提交
59
  static Type From(Tensor& tensor) {  // NOLINT
60
    return From(tensor, tensor.dims());
D
dzhwinter 已提交
61
  }  // NOLINT
Y
Yi Wang 已提交
62 63 64 65 66 67

  static ConstType From(const Tensor& tensor, DDim dims) {
    return ConstType(tensor.data<T>(), EigenDim<D>::From(dims));
  }

  static ConstType From(const Tensor& tensor) {
68
    return From(tensor, tensor.dims());
Y
Yi Wang 已提交
69 70 71
  }
};

72 73
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
F
WIP  
fengjiayi 已提交
74
struct EigenMatrix : public EigenTensor<T, 2, MajorType, IndexType> {
D
dzhwinter 已提交
75 76
  static typename EigenMatrix::Type Reshape(Tensor& tensor,  // NOLINT
                                            int num_col_dims) {
77
    int rank = tensor.dims().size();
78 79 80 81 82
    PADDLE_ENFORCE_EQ((num_col_dims > 0 && num_col_dims < rank), true,
                      platform::errors::InvalidArgument(
                          "Input dimension number(num_col_dims) must be "
                          "between 0 and %d, but received number is %d.",
                          rank, num_col_dims));
83
    return EigenMatrix::From(tensor,
F
fengjiayi 已提交
84
                             flatten_to_2d(tensor.dims(), num_col_dims));
F
WIP  
fengjiayi 已提交
85
  }
F
fengjiayi 已提交
86 87

  static typename EigenMatrix::ConstType Reshape(const Tensor& tensor,
F
fengjiayi 已提交
88
                                                 int num_col_dims) {
89
    int rank = tensor.dims().size();
90 91 92 93 94
    PADDLE_ENFORCE_EQ((num_col_dims > 0 && num_col_dims < rank), true,
                      platform::errors::InvalidArgument(
                          "Input dimension number(num_col_dims) must be "
                          "between 0 and %d, but received number is %d.",
                          rank, num_col_dims));
F
fengjiayi 已提交
95
    return EigenMatrix::From(tensor,
F
fengjiayi 已提交
96
                             flatten_to_2d(tensor.dims(), num_col_dims));
F
fengjiayi 已提交
97
  }
F
WIP  
fengjiayi 已提交
98
};
99

100 101 102
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
struct EigenVector : public EigenTensor<T, 1, MajorType, IndexType> {
103
  // Flatten reshapes a Tensor into an EigenVector.
D
dzhwinter 已提交
104
  static typename EigenVector::Type Flatten(Tensor& tensor) {  // NOLINT
105
    return EigenVector::From(tensor, {product(tensor.dims())});
Q
qijun 已提交
106 107
  }

D
dzhwinter 已提交
108 109
  static typename EigenVector::ConstType Flatten(
      const Tensor& tensor) {  // NOLINT
110
    return EigenVector::From(tensor, {product(tensor.dims())});
Q
qijun 已提交
111
  }
Y
Yi Wang 已提交
112 113
};

L
liaogang 已提交
114 115 116 117 118 119 120 121 122
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
struct EigenScalar {
  // Scalar tensor (implemented as a rank-0 tensor) of scalar type T.
  using Type = Eigen::TensorMap<
      Eigen::TensorFixedSize<T, Eigen::Sizes<>, MajorType, IndexType>>;
  using ConstType = Eigen::TensorMap<
      Eigen::TensorFixedSize<const T, Eigen::Sizes<>, MajorType, IndexType>>;

D
dzhwinter 已提交
123
  static Type From(Tensor& tensor) { return Type(tensor.data<T>()); }  // NOLINT
L
liaogang 已提交
124 125 126 127 128 129

  static ConstType From(const Tensor& tensor) {
    return ConstType(tensor.data<T>());
  }
};

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
// Define Tensor with 32-bit index.
template <typename T, int D, int MajorType = Eigen::RowMajor>
using Tensor32BitIndex =
    Eigen::TensorMap<Eigen::Tensor<T, D, MajorType, int>, Eigen::Aligned>;

template <typename DSizes>
Eigen::DSizes<int, DSizes::count> To32BitDims(const DSizes& in) {
  Eigen::DSizes<int, DSizes::count> out;
  for (int i = 0; i < DSizes::count; ++i) {
    out[i] = in[i];
  }
  return out;
}

template <typename EigenTensor>
Tensor32BitIndex<typename EigenTensor::Scalar, EigenTensor::NumIndices>
To32BitIndex(EigenTensor in) {
  using RetType =
      Tensor32BitIndex<typename EigenTensor::Scalar, EigenTensor::NumIndices>;
  return RetType(in.data(), To32BitDims(in.dimensions()));
}

Y
Yi Wang 已提交
152 153
}  // namespace framework
}  // namespace paddle