lstm_compute.cc 3.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dangqingqing 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/lstm_compute.h"
W
wanghuancoder 已提交
16

Y
Yi Wang 已提交
17 18
#include "paddle/fluid/operators/math/detail/lstm_cpu_kernel.h"
#include "paddle/fluid/operators/math/detail/lstm_kernel.h"
D
dangqingqing 已提交
19

W
wanghuancoder 已提交
20 21 22 23 24 25
namespace paddle {
namespace platform {
class CPUDeviceContext;
}  // namespace platform
}  // namespace paddle

D
dangqingqing 已提交
26 27 28 29 30
namespace paddle {
namespace operators {
namespace math {

template <class T>
Q
QI JUN 已提交
31 32
struct LstmUnitFunctor<platform::CPUDeviceContext, T> {
  static void compute(const platform::CPUDeviceContext& context,
33
                      LstmMetaValue<T> value, int frame_size, int batch_size,
34
                      T cell_clip, const detail::ActivationType& gate_act,
35 36
                      const detail::ActivationType& cell_act,
                      const detail::ActivationType& cand_act) {
D
dangqingqing 已提交
37
    for (int b = 0; b < batch_size; b++) {
38
      detail::cpu_lstm_forward(detail::forward::lstm<T>(), value, frame_size,
39
                               cell_clip, cand_act, gate_act, cell_act);
40 41 42 43 44 45
      value.gate_value += frame_size * 4;
      value.state_value += frame_size;
      value.state_active_value += frame_size;
      value.output_value += frame_size;
      if (value.prev_state_value) {
        value.prev_state_value += frame_size;
D
dangqingqing 已提交
46 47 48 49 50 51
      }
    }
  }
};

template <class T>
Q
QI JUN 已提交
52 53
struct LstmUnitGradFunctor<platform::CPUDeviceContext, T> {
  static void compute(const platform::CPUDeviceContext& context,
54
                      LstmMetaValue<T> value, LstmMetaGrad<T> grad,
55
                      int frame_size, int batch_size, T cell_clip,
56 57 58
                      const detail::ActivationType& gate_act,
                      const detail::ActivationType& cell_act,
                      const detail::ActivationType& cand_act) {
59
    for (int b = 0; b < batch_size; b++) {
D
dangqingqing 已提交
60
      detail::cpu_lstm_backward(detail::backward::lstm<T>(), value, grad,
61 62
                                frame_size, cell_clip, cand_act, gate_act,
                                cell_act);
D
dangqingqing 已提交
63

64 65 66 67 68 69
      value.gate_value += frame_size * 4;
      value.state_value += frame_size;
      value.state_active_value += frame_size;
      value.output_value += frame_size;
      if (value.prev_state_value) {
        value.prev_state_value += frame_size;
D
dangqingqing 已提交
70 71
      }

72 73 74 75 76 77
      grad.gate_grad += frame_size * 4;
      grad.state_grad += frame_size;
      grad.state_active_grad += frame_size;
      grad.output_grad += frame_size;
      if (grad.prev_state_grad) {
        grad.prev_state_grad += frame_size;
D
dangqingqing 已提交
78 79
      }
    }
80 81 82
  }
};

Q
QI JUN 已提交
83 84 85 86
template class LstmUnitFunctor<platform::CPUDeviceContext, float>;
template class LstmUnitFunctor<platform::CPUDeviceContext, double>;
template class LstmUnitGradFunctor<platform::CPUDeviceContext, float>;
template class LstmUnitGradFunctor<platform::CPUDeviceContext, double>;
D
dangqingqing 已提交
87 88 89 90

}  // namespace math
}  // namespace operators
}  // namespace paddle