math_function_test.cu 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#include "gtest/gtest.h"
#include "paddle/operators/math/math_function.h"

TEST(math_function, notrans_mul_trans) {
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input1_gpu;
  paddle::framework::Tensor input2_gpu;
  paddle::framework::Tensor out_gpu;
  paddle::framework::Tensor out;

  auto* cpu_place = new paddle::platform::CPUPlace();
  float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
  float arr[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr, 6 * sizeof(float));

  auto* gpu_place = new paddle::platform::GPUPlace(0);
  paddle::platform::CUDADeviceContext context(*gpu_place);

D
dzhwinter 已提交
19 20
  paddle::framework::CopyFrom(input1, *gpu_place, context, &input1_gpu);
  paddle::framework::CopyFrom(input1, *gpu_place, context, &input2_gpu);
21 22 23 24 25 26

  out_gpu.mutable_data<float>({2, 2}, *gpu_place);

  paddle::operators::math::matmul<paddle::platform::GPUPlace, float>(
      context, input1_gpu, false, input2_gpu, true, 1, &out_gpu, 0);

D
dzhwinter 已提交
27
  paddle::framework::CopyFrom(out_gpu, *cpu_place, context, &out);
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

  float* out_ptr = out.data<float>();
  context.Wait();
  EXPECT_EQ(out_ptr[0], 5);
  EXPECT_EQ(out_ptr[1], 14);
  EXPECT_EQ(out_ptr[2], 14);
  EXPECT_EQ(out_ptr[3], 50);
  delete gpu_place;
}

TEST(math_function, trans_mul_notrans) {
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input1_gpu;
  paddle::framework::Tensor input2_gpu;
  paddle::framework::Tensor out_gpu;
  paddle::framework::Tensor out;

  auto* cpu_place = new paddle::platform::CPUPlace();
  float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
  float arr[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr, 6 * sizeof(float));

  auto* gpu_place = new paddle::platform::GPUPlace(0);
  paddle::platform::CUDADeviceContext context(*gpu_place);

D
dzhwinter 已提交
53 54
  paddle::framework::CopyFrom(input1, *gpu_place, context, &input1_gpu);
  paddle::framework::CopyFrom(input1, *gpu_place, context, &input2_gpu);
55 56 57 58 59 60

  out_gpu.mutable_data<float>({3, 3}, *gpu_place);

  paddle::operators::math::matmul<paddle::platform::GPUPlace, float>(
      context, input1_gpu, true, input2_gpu, false, 1, &out_gpu, 0);

D
dzhwinter 已提交
61
  paddle::framework::CopyFrom(out_gpu, *cpu_place, context, &out);
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

  float* out_ptr = out.data<float>();
  context.Wait();
  EXPECT_EQ(out_ptr[0], 9);
  EXPECT_EQ(out_ptr[1], 12);
  EXPECT_EQ(out_ptr[2], 15);
  EXPECT_EQ(out_ptr[3], 12);
  EXPECT_EQ(out_ptr[4], 17);
  EXPECT_EQ(out_ptr[5], 22);
  EXPECT_EQ(out_ptr[6], 15);
  EXPECT_EQ(out_ptr[7], 22);
  EXPECT_EQ(out_ptr[8], 29);
  delete gpu_place;
}

TEST(math_function, gemm_notrans_cublas) {
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input2;
  paddle::framework::Tensor input3;
  paddle::framework::Tensor input1_gpu;
  paddle::framework::Tensor input2_gpu;
  paddle::framework::Tensor input3_gpu;

  int m = 2;
  int n = 3;
  int k = 3;
  auto* cpu_place = new paddle::platform::CPUPlace();
  float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
  float arr1[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr1, 6 * sizeof(float));
  float* input2_ptr = input2.mutable_data<float>({3, 4}, *cpu_place);
  float arr2[12] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
  memcpy(input2_ptr, arr2, 12 * sizeof(float));
  float* input3_ptr = input3.mutable_data<float>({2, 4}, *cpu_place);
  float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
  memcpy(input3_ptr, arr3, 8 * sizeof(float));

  auto* gpu_place = new paddle::platform::GPUPlace(0);
  paddle::platform::CUDADeviceContext context(*gpu_place);

D
dzhwinter 已提交
102 103 104
  paddle::framework::CopyFrom(input1, *gpu_place, context, &input1_gpu);
  paddle::framework::CopyFrom(input2, *gpu_place, context, &input2_gpu);
  paddle::framework::CopyFrom(input3, *gpu_place, context, &input3_gpu);
105 106 107 108 109 110 111
  float* a = input1_gpu.data<float>();
  float* b = input2_gpu.data<float>();
  float* c = input3_gpu.mutable_data<float>(*gpu_place);

  paddle::operators::math::gemm<paddle::platform::GPUPlace, float>(
      context, false, false, m, n, k, 1, a, 3, b + 1, 4, 1, c + 1, 4);

D
dzhwinter 已提交
112
  paddle::framework::CopyFrom(input3_gpu, *cpu_place, context, &input3);
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

  // numpy code:
  // a = np.arange(6).reshape(2, 3)
  // b = np.arange(12).reshape(3, 4)[:, 1:]
  // c = np.arange(8).reshape(2, 4)[:, 1:]
  // out = np.arange(8).reshape(2, 4)
  // out[:, 1:] = np.dot(a, b) + c
  context.Wait();
  EXPECT_EQ(input3_ptr[0], 0);
  EXPECT_EQ(input3_ptr[1], 24);
  EXPECT_EQ(input3_ptr[2], 28);
  EXPECT_EQ(input3_ptr[3], 32);
  EXPECT_EQ(input3_ptr[4], 4);
  EXPECT_EQ(input3_ptr[5], 73);
  EXPECT_EQ(input3_ptr[6], 86);
  EXPECT_EQ(input3_ptr[7], 99);
  delete gpu_place;
}

TEST(math_function, gemm_trans_cublas) {
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input2;
  paddle::framework::Tensor input3;
  paddle::framework::Tensor input1_gpu;
  paddle::framework::Tensor input2_gpu;
  paddle::framework::Tensor input3_gpu;

  int m = 2;
  int n = 3;
  int k = 3;
  auto* cpu_place = new paddle::platform::CPUPlace();
  float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
  float arr1[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr1, 6 * sizeof(float));
  float* input2_ptr = input2.mutable_data<float>({4, 3}, *cpu_place);
  float arr2[12] = {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11};
  memcpy(input2_ptr, arr2, 12 * sizeof(float));
  float* input3_ptr = input3.mutable_data<float>({2, 4}, *cpu_place);
  float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
  memcpy(input3_ptr, arr3, 8 * sizeof(float));

  auto* gpu_place = new paddle::platform::GPUPlace(0);
  paddle::platform::CUDADeviceContext context(*gpu_place);

D
dzhwinter 已提交
157 158 159
  paddle::framework::CopyFrom(input1, *gpu_place, context, &input1_gpu);
  paddle::framework::CopyFrom(input2, *gpu_place, context, &input2_gpu);
  paddle::framework::CopyFrom(input3, *gpu_place, context, &input3_gpu);
160 161 162 163 164 165 166
  float* a = input1_gpu.data<float>();
  float* b = input2_gpu.data<float>();
  float* c = input3_gpu.mutable_data<float>(*gpu_place);

  paddle::operators::math::gemm<paddle::platform::GPUPlace, float>(
      context, false, true, m, n, k, 1, a, 3, b + 3, 3, 1, c + 1, 4);

D
dzhwinter 已提交
167
  paddle::framework::CopyFrom(input3_gpu, *cpu_place, context, &input3);
168 169 170 171 172 173 174 175 176 177 178 179
  context.Wait();

  EXPECT_EQ(input3_ptr[0], 0);
  EXPECT_EQ(input3_ptr[1], 24);
  EXPECT_EQ(input3_ptr[2], 28);
  EXPECT_EQ(input3_ptr[3], 32);
  EXPECT_EQ(input3_ptr[4], 4);
  EXPECT_EQ(input3_ptr[5], 73);
  EXPECT_EQ(input3_ptr[6], 86);
  EXPECT_EQ(input3_ptr[7], 99);
  delete gpu_place;
}
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

template <typename T>
void GemvTest(int m, int n, bool trans) {
  paddle::framework::Tensor mat_a;
  paddle::framework::Tensor vec_b;
  paddle::framework::Tensor vec_c;
  auto* cpu_place = new paddle::platform::CPUPlace();

  T* data_a = mat_a.mutable_data<T>({m, n}, *cpu_place);
  T* data_b = vec_b.mutable_data<T>({trans ? m : n}, *cpu_place);
  T* data_c = vec_c.mutable_data<T>({trans ? n : m}, *cpu_place);

  auto* gpu_place = new paddle::platform::GPUPlace(0);
  paddle::framework::Tensor g_mat_a;
  paddle::framework::Tensor g_vec_b;
  paddle::framework::Tensor g_vec_c;
  T* g_data_a = g_mat_a.mutable_data<T>(mat_a.dims(), *gpu_place);
  T* g_data_b = g_vec_b.mutable_data<T>(vec_b.dims(), *gpu_place);
  T* g_data_c = g_vec_c.mutable_data<T>(vec_c.dims(), *gpu_place);

  for (int i = 0; i < mat_a.numel(); ++i) {
    data_a[i] = static_cast<T>(i);
  }
  for (int i = 0; i < vec_b.numel(); ++i) {
    data_b[i] = static_cast<T>(i);
  }

  paddle::platform::CUDADeviceContext context(*gpu_place);
D
dzhwinter 已提交
208 209
  paddle::framework::CopyFrom(mat_a, *gpu_place, context, &g_mat_a);
  paddle::framework::CopyFrom(vec_b, *gpu_place, context, &g_vec_b);
210 211 212 213 214

  paddle::operators::math::gemv<paddle::platform::GPUPlace, T>(
      context, trans, static_cast<int>(m), static_cast<int>(n), 1., g_data_a,
      g_data_b, 0., g_data_c);

D
dzhwinter 已提交
215 216
  paddle::framework::CopyFrom(g_vec_c, paddle::platform::CPUPlace(), context,
                              &vec_c);
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

  if (!trans) {
    for (int i = 0; i < m; ++i) {
      T sum = 0.0;
      for (int j = 0; j < n; ++j) {
        sum += data_a[i * n + j] * data_b[j];
      }
      ASSERT_FLOAT_EQ(data_c[i], sum);
    }
  } else {
    for (int i = 0; i < n; ++i) {
      T sum = 0.0;
      for (int j = 0; j < m; ++j) {
        sum += data_a[j * n + i] * data_b[j];
      }
      ASSERT_FLOAT_EQ(data_c[i], sum);
    }
  }
}

TEST(math_function, gemv) {
  GemvTest<float>(3, 13, false);
  GemvTest<double>(3, 13, false);
  GemvTest<float>(3, 13, true);
  GemvTest<double>(3, 13, true);
}
新手
引导
客服 返回
顶部