lr.py 83.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import numpy
import warnings
from paddle import Tensor
19
import paddle.fluid.core as core
J
Jiabin Yang 已提交
20
from ..fluid.framework import _in_legacy_dygraph
21

G
guguguzi 已提交
22
__all__ = [  # noqa
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
    'LRScheduler',
    'NoamDecay',
    'PiecewiseDecay',
    'NaturalExpDecay',
    'InverseTimeDecay',
    'PolynomialDecay',
    'LinearWarmup',
    'ExponentialDecay',
    'MultiStepDecay',
    'StepDecay',
    'LambdaDecay',
    'ReduceOnPlateau',
    'CosineAnnealingDecay',
    'MultiplicativeDecay',
    'OneCycleLR',
    'CyclicLR',
39 40 41
]


42 43 44 45 46
class LRScheduler(object):
    """

    LRScheduler Base class. Define the common interface of a learning rate scheduler.

Z
Zhou Wei 已提交
47
    User can import it by ``from paddle.optimizer.lr import LRScheduler`` ,
48 49 50 51 52 53 54 55 56 57 58 59 60 61

    then overload it for your subclass and have a custom implementation of ``get_lr()`` .

    Otherwise, an ``NotImplementedError`` exception will be thrown.

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .

    Returns:
        instance to schedule learning rate.

    Examples:
62
        Here is an example of a simple ``StepDecay`` implementation.
G
guguguzi 已提交
63

64
        .. code-block:: python
G
guguguzi 已提交
65

66
            import paddle
Z
Zhou Wei 已提交
67
            from paddle.optimizer.lr import LRScheduler
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

            class StepDecay(LRScheduler):
                def __init__(self,
                            learning_rate,
                            step_size,
                            gamma=0.1,
                            last_epoch=-1,
                            verbose=False):
                    if not isinstance(step_size, int):
                        raise TypeError(
                            "The type of 'step_size' must be 'int', but received %s." %
                            type(step_size))
                    if gamma >= 1.0:
                        raise ValueError('gamma should be < 1.0.')

                    self.step_size = step_size
                    self.gamma = gamma
                    super(StepDecay, self).__init__(learning_rate, last_epoch, verbose)

                def get_lr(self):
                    i = self.last_epoch // self.step_size
                    return self.base_lr * (self.gamma**i)
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

    """

    def __init__(self, learning_rate=0.1, last_epoch=-1, verbose=False):
        if not isinstance(learning_rate, (float, int)):
            raise TypeError(
                "The type of learning rate must be float, but received {}".
                format(type(learning_rate)))
        self.base_lr = float(learning_rate)
        self.last_lr = float(learning_rate)
        self.last_epoch = last_epoch
        self.verbose = verbose
        self._var_name = None

        self.step()

    def __call__(self):
G
guguguzi 已提交
107
        """
108
        Return lastest computed learning rate on current epoch.
109 110 111 112 113
        """
        return self.last_lr

    def step(self, epoch=None):
        """
114

G
guguguzi 已提交
115
        ``step`` should be called after ``optimizer.step`` . It will update the learning rate in optimizer according to current ``epoch`` .
116
        The new learning rate will take effect on next ``optimizer.step`` .
117 118 119 120 121 122

        Args:
            epoch (int, None): specify current epoch. Default: None. Auto-increment from last_epoch=-1.

        Returns:
            None
123

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        """
        if epoch is None:
            self.last_epoch += 1
            self.last_lr = self.get_lr()
        else:
            self.last_epoch = epoch
            if hasattr(self, "_get_closed_form_lr"):
                self.last_lr = self._get_closed_form_lr()
            else:
                self.last_lr = self.get_lr()

        if self.verbose:
            print('Epoch {}: {} set learning rate to {}.'.format(
                self.last_epoch, self.__class__.__name__, self.last_lr))

    def state_dict(self):
        """
141

142 143
        Returns the state of the scheduler as a :class:`dict`.

144
        It is a subset of ``self.__dict__`` .
145
        """
146
        self.state_keys()
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
        state_dict = {}
        for key in self.keys:
            if key not in self.__dict__:
                continue
            value = self.__dict__[key]
            if isinstance(value, Tensor):
                assert value.shape == [
                    1
                ], "shape of Tensor in state_dict must be [1] {}".format(
                    value.shape)
                value = value.numpy()[0]
            state_dict[key] = value

        return state_dict

162
    # For those subclass who overload LRScheduler, "last_epoch, last_lr" will be saved by default.
163
    # (Note): you can change it for your subclass.
164
    def state_keys(self):
165
        """
166 167 168 169 170 171 172

        For those subclass who overload ``LRScheduler`` (Base Class). Acquiescently, "last_epoch, last_lr" will be saved by ``self.keys = ['last_epoch', 'last_lr']`` .

        ``last_epoch`` is the current epoch num, and ``last_lr`` is the current learning rate.

        If you want to change the default behavior, you should have a custom implementation of ``_state_keys()`` to redefine ``self.keys`` .

173 174 175
        """
        self.keys = ['last_epoch', 'last_lr']

176
    def set_state_dict(self, state_dict):
177
        """
178

179 180
        Loads the schedulers state.
        """
181
        self.state_keys()
182 183 184 185 186
        for key in self.keys:
            if key in state_dict:
                self.__dict__[key] = state_dict[key]
            else:
                raise RuntimeError(
187 188
                    "Please check whether state_dict is correct for optimizer. Can't find [ {} ] in state_dict"
                    .format(key))
189 190 191 192 193
        if len(state_dict) > len(self.keys):
            warnings.warn(
                "There are some unused values in state_dict. Maybe the optimizer have different 'LearningRateDecay' when invoking state_dict and set_dict"
            )

194 195
    # alias for set_state_dict
    set_dict = set_state_dict
196 197

    def get_lr(self):
198
        """
G
guguguzi 已提交
199

200 201 202 203
        For those subclass who overload ``LRScheduler`` (Base Class), User should have a custom implementation of ``get_lr()`` .

        Otherwise, an ``NotImplementedError`` exception will be thrown.
        """
204 205 206 207
        # calculate by python float
        raise NotImplementedError


208
class NoamDecay(LRScheduler):
209
    r"""
210

G
guguguzi 已提交
211
    Applies Noam Decay to the initial learning rate.
212 213 214 215 216 217 218

    The algorithm can be described as following.

    .. math::

        new\_learning\_rate = learning\_rate * d_{model}^{-0.5} * min(epoch^{-0.5}, epoch * warmup\_steps^{-1.5})

G
guguguzi 已提交
219
    Please reference `attention is all you need <https://arxiv.org/pdf/1706.03762.pdf>`_
220 221 222 223 224 225 226


    Args:
        d$_{model}$(int): The dimensionality of input and output feature vector of model. It is a python int number.
        warmup_steps(int): The number of warmup steps. A super parameter. It is a python int number
        learning_rate (float): The initial learning rate. It is a python float number. Default: 1.0.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
227
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
228 229

    Returns:
230
        ``NoamDecay`` instance to schedule learning rate.
231 232 233 234 235 236 237

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

238
            # train on default dynamic graph mode
239
            linear = paddle.nn.Linear(10, 10)
240 241
            scheduler = paddle.optimizer.lr.NoamDecay(d_model=0.01, warmup_steps=100, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
242
            for epoch in range(20):
Z
Zhou Wei 已提交
243
                for batch_id in range(5):
244
                    x = paddle.uniform([10, 10])
245
                    out = linear(x)
C
chentianyu03 已提交
246
                    loss = paddle.mean(out)
247
                    loss.backward()
248 249
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
250 251
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
252

253
            # train on static graph mode
254 255 256 257
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
258 259
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
260 261
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
262
                scheduler = paddle.optimizer.lr.NoamDecay(d_model=0.01, warmup_steps=100, verbose=True)
263 264 265 266 267 268
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
269
                for batch_id in range(5):
270 271 272 273 274 275
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
276
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
277 278
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
279 280 281 282 283 284 285 286 287 288 289

    """

    def __init__(self,
                 d_model,
                 warmup_steps,
                 learning_rate=1.0,
                 last_epoch=-1,
                 verbose=False):
        self.d_model = d_model
        self.warmup_steps = warmup_steps
290
        super(NoamDecay, self).__init__(learning_rate, last_epoch, verbose)
291 292 293 294 295 296 297 298 299 300

    def get_lr(self):
        if self.last_epoch == 0:
            a = 1
        else:
            a = self.last_epoch**-0.5
        b = self.warmup_steps**-1.5 * self.last_epoch
        return self.base_lr * (self.d_model**-0.5) * min(a, b)


301
class PiecewiseDecay(LRScheduler):
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
    """

    Piecewise learning rate scheduler.

    The algorithm can be described as the code below:

    .. code-block:: text

        boundaries = [100, 200]
        values = [1.0, 0.5, 0.1]
        if epoch < 100:
            learning_rate = 1.0
        elif 100 <= global_step < 200:
            learning_rate = 0.5
        else:
            learning_rate = 0.1

    Args:
G
guguguzi 已提交
320 321
        boundaries(list|tuple): A list/tuple of steps numbers. The type of element in the list is python int.
        values(list|tuple): A list/tuple of learning rate values that will be picked during different epoch boundaries.
322 323
            The type of element in the list is python float.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
324
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
325 326

    Returns:
327
        ``PiecewiseDecay`` instance to schedule learning rate.
328 329

    Examples:
G
guguguzi 已提交
330

331 332 333 334 335
        .. code-block:: python

            import paddle
            import numpy as np

336
            # train on default dynamic graph mode
337
            linear = paddle.nn.Linear(10, 10)
338 339
            scheduler = paddle.optimizer.lr.PiecewiseDecay(boundaries=[3, 6, 9], values=[0.1, 0.2, 0.3, 0.4], verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
340
            for epoch in range(20):
Z
Zhou Wei 已提交
341
                for batch_id in range(5):
342
                    x = paddle.uniform([10, 10])
343
                    out = linear(x)
C
chentianyu03 已提交
344
                    loss = paddle.mean(out)
345
                    loss.backward()
346 347
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
348 349
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
350

351
            # train on static graph mode
352 353 354 355
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
356 357
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
358 359
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
360
                scheduler = paddle.optimizer.lr.PiecewiseDecay(boundaries=[3, 6, 9], values=[0.1, 0.2, 0.3, 0.4], verbose=True)
361 362 363 364 365 366
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
367
                for batch_id in range(5):
368 369 370 371 372 373
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
374
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
375 376
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
377 378 379 380 381
    """

    def __init__(self, boundaries, values, last_epoch=-1, verbose=False):
        self.boundaries = boundaries
        self.values = values
382 383
        super(PiecewiseDecay, self).__init__(last_epoch=last_epoch,
                                             verbose=verbose)
384 385 386 387 388 389 390 391

    def get_lr(self):
        for i in range(len(self.boundaries)):
            if self.last_epoch < self.boundaries[i]:
                return self.values[i]
        return self.values[len(self.values) - 1]


392
class NaturalExpDecay(LRScheduler):
393
    r"""
394 395

    Applies natural exponential decay to the initial learning rate.
G
guguguzi 已提交
396

397 398 399 400
    The algorithm can be described as following:

    .. math::

401
        new\_learning\_rate = learning\_rate * e^{- gamma * epoch}
402 403 404

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
405
        gamma (float, optional): A Ratio to update the learning rate, should greater than 0.0 to make learning rate decay. Default: 0.1.
406
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
407
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
408 409

    Returns:
410
        ``NaturalExpDecay`` instance to schedule learning rate.
411 412

    Examples:
G
guguguzi 已提交
413

414 415 416 417 418
        .. code-block:: python

            import paddle
            import numpy as np

419
            # train on default dynamic graph mode
420
            linear = paddle.nn.Linear(10, 10)
421 422
            scheduler = paddle.optimizer.lr.NaturalExpDecay(learning_rate=0.5, gamma=0.1, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
423
            for epoch in range(20):
Z
Zhou Wei 已提交
424
                for batch_id in range(5):
425
                    x = paddle.uniform([10, 10])
426
                    out = linear(x)
C
chentianyu03 已提交
427
                    loss = paddle.mean(out)
428
                    loss.backward()
429 430
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
431 432
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
433

434
            # train on static graph mode
435 436 437 438
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
439 440
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
441 442
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
443
                scheduler = paddle.optimizer.lr.NaturalExpDecay(learning_rate=0.5, gamma=0.1, verbose=True)
444 445 446 447 448 449
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
450
                for batch_id in range(5):
451 452 453 454 455 456
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
457
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
458 459
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
460 461 462
    """

    def __init__(self, learning_rate, gamma, last_epoch=-1, verbose=False):
463
        assert gamma > 0.0, " 'gamma' must be a positive number so that the learning rate will decay."
464
        self.gamma = gamma
465 466
        super(NaturalExpDecay, self).__init__(learning_rate, last_epoch,
                                              verbose)
467 468 469 470 471

    def get_lr(self):
        return self.base_lr * math.exp(-1 * self.gamma * self.last_epoch)


472
class InverseTimeDecay(LRScheduler):
473
    r"""
474 475 476 477 478 479 480

    Applies inverse time decay to the initial learning rate.

    The algorithm can be described as following:

    .. math::

481
        new\_learning\_rate = \frac{learning\_rate}{1 + gamma * epoch}
482 483 484

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
G
guguguzi 已提交
485
        gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
486 487
            It should be less than 1.0. Default: 0.1.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
488
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
489 490

    Returns:
491
        ``InverseTimeDecay`` instance to schedule learning rate.
492 493

    Examples:
G
guguguzi 已提交
494

495 496 497 498 499
        .. code-block:: python

            import paddle
            import numpy as np

500
            # train on default dynamic graph mode
501
            linear = paddle.nn.Linear(10, 10)
502 503
            scheduler = paddle.optimizer.lr.InverseTimeDecay(learning_rate=0.5, gamma=0.1, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
504
            for epoch in range(20):
Z
Zhou Wei 已提交
505
                for batch_id in range(5):
506
                    x = paddle.uniform([10, 10])
507
                    out = linear(x)
C
chentianyu03 已提交
508
                    loss = paddle.mean(out)
509
                    loss.backward()
510 511
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
512 513
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
514

515
            # train on static graph mode
516 517 518 519
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
520 521
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
522 523
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
524
                scheduler = paddle.optimizer.lr.InverseTimeDecay(learning_rate=0.5, gamma=0.1, verbose=True)
525 526 527 528 529 530
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
531
                for batch_id in range(5):
532 533 534 535 536 537
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
538
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
539 540
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
541 542 543 544 545

    """

    def __init__(self, learning_rate, gamma, last_epoch=-1, verbose=False):
        self.gamma = gamma
546 547
        super(InverseTimeDecay, self).__init__(learning_rate, last_epoch,
                                               verbose)
548 549 550 551 552

    def get_lr(self):
        return self.base_lr / (1 + self.gamma * self.last_epoch)


553
class PolynomialDecay(LRScheduler):
554
    r"""
555 556 557 558 559 560 561 562 563

    Applies polynomial decay to the initial learning rate.

    The algorithm can be described as following.

    If cycle is set to True, then:

    .. math::

G
guguguzi 已提交
564
        decay\_steps & = decay\_steps * math.ceil(\frac{epoch}{decay\_steps})
565

566
        new\_learning\_rate & = (learning\_rate-end\_lr)*(1-\frac{epoch}{decay\_steps})^{power}+end\_lr
567 568 569 570 571

    If cycle is set to False, then:

    .. math::

G
guguguzi 已提交
572
        epoch & = min(epoch, decay\_steps)
573

574
        new\_learning\_rate & = (learning\_rate-end\_lr)*(1-\frac{epoch}{decay\_steps})^{power}+end\_lr
575 576 577 578


    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
579
        decay_steps(int): The decay step size. It determines the decay cycle. It must be a positive integer.
580
        end_lr(float, optional): The minimum final learning rate. Default: 0.0001.
581
        power(float, optional): Power of polynomial, should greater than 0.0 to get learning rate decay. Default: 1.0.
G
guguguzi 已提交
582
        cycle(bool, optional): Whether the learning rate rises again. If True, then the learning rate will rise when it decrease
583 584
            to ``end_lr`` .  If False, the learning rate is monotone decreasing. Default: False.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
585
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
586 587

    Returns:
588
        ``PolynomialDecay`` instance to schedule learning rate.
589 590

    Examples:
G
guguguzi 已提交
591

592 593 594 595 596
        .. code-block:: python

            import paddle
            import numpy as np

597
            # train on default dynamic graph mode
598
            linear = paddle.nn.Linear(10, 10)
599 600
            scheduler = paddle.optimizer.lr.PolynomialDecay(learning_rate=0.5, decay_steps=20, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
601
            for epoch in range(20):
Z
Zhou Wei 已提交
602
                for batch_id in range(5):
603
                    x = paddle.uniform([10, 10])
604
                    out = linear(x)
C
chentianyu03 已提交
605
                    loss = paddle.mean(out)
606
                    loss.backward()
607 608
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
609 610
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
611

612
            # train on static graph mode
613 614 615 616
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
617 618
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
619 620
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
621
                scheduler = paddle.optimizer.lr.PolynomialDecay(learning_rate=0.5, decay_steps=20, verbose=True)
622 623 624 625 626 627
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
628
                for batch_id in range(5):
629 630 631 632 633 634
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
635
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
636 637
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
638 639 640 641 642 643 644 645 646 647
    """

    def __init__(self,
                 learning_rate,
                 decay_steps,
                 end_lr=0.0001,
                 power=1.0,
                 cycle=False,
                 last_epoch=-1,
                 verbose=False):
648 649
        assert decay_steps > 0 and isinstance(
            decay_steps, int), " 'decay_steps' must be a positive integer."
650 651
        self.decay_steps = decay_steps
        self.end_lr = end_lr
652
        assert power > 0.0, " 'power' must be greater than 0.0 so that the learning rate will decay."
653 654
        self.power = power
        self.cycle = cycle
655 656
        super(PolynomialDecay, self).__init__(learning_rate, last_epoch,
                                              verbose)
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671

    def get_lr(self):
        tmp_epoch_num = self.last_epoch
        tmp_decay_steps = self.decay_steps
        if self.cycle:
            div_res = math.ceil(
                float(self.last_epoch) / float(self.decay_steps))

            if self.last_epoch == 0:
                div_res = 1
            tmp_decay_steps = self.decay_steps * div_res
        else:
            tmp_epoch_num = min(self.last_epoch, self.decay_steps)

        return (self.base_lr - self.end_lr) * (
672 673
            (1 - float(tmp_epoch_num) / float(tmp_decay_steps))**
            self.power) + self.end_lr
674 675


676
class LinearWarmup(LRScheduler):
677
    r"""
678 679 680

    Linear learning rate warm up strategy. Update the learning rate preliminarily before the normal learning rate scheduler.
    For more information, please refer to `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/abs/1812.01187>`_
G
guguguzi 已提交
681

682
    When epoch < warmup_steps, learning rate is updated as:
G
guguguzi 已提交
683

684
    .. math::
G
guguguzi 已提交
685

686
            lr = start\_lr + (end\_lr - start\_lr) * \frac{epoch}{warmup\_steps}
G
guguguzi 已提交
687

688
    where start_lr is the initial learning rate, and end_lr is the final learning rate;
G
guguguzi 已提交
689

690
    When epoch >= warmup_steps, learning rate is updated as:
G
guguguzi 已提交
691

692
    .. math::
G
guguguzi 已提交
693

694
            lr = learning_rate
G
guguguzi 已提交
695

696
    where ``learning_rate`` is float or any subclass of ``LRScheduler`` .
697 698

    Args:
699
        learning_rate (float|LRScheduler): The learning rate after warm-up. It is a python float number or any subclass of ``LRScheduler`` .
700
        warmup_steps (int): total steps of warm up. It must be a positive integer.
701 702 703
        start_lr (float): Initial learning rate of warm up.
        end_lr (float): Final learning rate of warm up.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
704
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
705 706

    Returns:
707
        ``LinearWarmup`` instance to schedule learning rate.
708 709

    Examples:
G
guguguzi 已提交
710

711 712 713 714 715
        .. code-block:: python

            import paddle
            import numpy as np

716
            # train on default dynamic graph mode
717
            linear = paddle.nn.Linear(10, 10)
718
            scheduler = paddle.optimizer.lr.LinearWarmup(
719
                    learning_rate=0.5, warmup_steps=20, start_lr=0, end_lr=0.5, verbose=True)
720
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
721
            for epoch in range(20):
Z
Zhou Wei 已提交
722
                for batch_id in range(5):
723
                    x = paddle.uniform([10, 10])
724
                    out = linear(x)
C
chentianyu03 已提交
725
                    loss = paddle.mean(out)
726
                    loss.backward()
727 728
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
729 730
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
731

732
            # train on static graph mode
733 734 735 736
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
737 738
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
739 740
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
741
                scheduler = paddle.optimizer.lr.LinearWarmup(
742 743 744 745 746 747 748
                    learning_rate=0.5, warmup_steps=20, start_lr=0, end_lr=0.5, verbose=True)
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
749
                for batch_id in range(5):
750 751 752 753 754 755
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
756
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
757 758
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
759 760 761 762 763 764 765 766 767 768
    """

    def __init__(self,
                 learning_rate,
                 warmup_steps,
                 start_lr,
                 end_lr,
                 last_epoch=-1,
                 verbose=False):
        type_check = isinstance(learning_rate, float) or isinstance(
769
            learning_rate, int) or isinstance(learning_rate, LRScheduler)
770 771
        if not type_check:
            raise TypeError(
772 773
                "the type of learning_rate should be [int, float or LRScheduler], the current type is {}"
                .format(learning_rate))
774
        self.learning_rate = learning_rate
775 776
        assert warmup_steps > 0 and isinstance(
            warmup_steps, int), " 'warmup_steps' must be a positive integer."
777 778 779 780 781
        self.warmup_steps = warmup_steps
        self.start_lr = start_lr
        self.end_lr = end_lr
        assert end_lr > start_lr, "end_lr {} must be greater than start_lr {}".format(
            end_lr, start_lr)
782
        super(LinearWarmup, self).__init__(start_lr, last_epoch, verbose)
783

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
    def state_dict(self):
        """
        Returns the state of the LinearWarmup scheduler as a :class:`dict`.

        It is a subset of ``self.__dict__`` .
        """
        state_dict = super(LinearWarmup, self).state_dict()
        if isinstance(self.learning_rate, LRScheduler):
            state_dict["LinearWarmup_LR"] = self.learning_rate.state_dict()
        return state_dict

    def set_state_dict(self, state_dict):
        """
        Loads state_dict for LinearWarmup scheduler.
        """
        super(LinearWarmup, self).set_state_dict(state_dict)
        if isinstance(self.learning_rate, LRScheduler):
            self.learning_rate.set_state_dict(state_dict["LinearWarmup_LR"])

803 804 805 806 807
    def get_lr(self):
        if self.last_epoch < self.warmup_steps:
            return (self.end_lr - self.start_lr) * float(
                self.last_epoch) / float(self.warmup_steps) + self.start_lr
        else:
808
            if isinstance(self.learning_rate, LRScheduler):
809 810
                self.learning_rate.step(self.last_epoch - self.warmup_steps)
                return self.learning_rate()
811 812 813 814

            return self.learning_rate


815
class ExponentialDecay(LRScheduler):
816
    r"""
817

818
    Update learning rate by `gamma` each epoch.
819 820

    The algorithm can be described as following.
G
guguguzi 已提交
821

822 823 824 825 826 827
    .. math::

        new\_learning\_rate = last\_learning\_rate * gamma

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
G
guguguzi 已提交
828
        gamma (float): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
829
            It should be in interval (0.0, 1.0).
830
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
831
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
832 833

    Returns:
834
        ``ExponentialDecay`` instance to schedule learning rate.
835 836

    Examples:
G
guguguzi 已提交
837

838 839 840 841 842
        .. code-block:: python

            import paddle
            import numpy as np

843
            # train on default dynamic graph mode
844
            linear = paddle.nn.Linear(10, 10)
845 846
            scheduler = paddle.optimizer.lr.ExponentialDecay(learning_rate=0.5, gamma=0.9, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
847
            for epoch in range(20):
Z
Zhou Wei 已提交
848
                for batch_id in range(5):
849
                    x = paddle.uniform([10, 10])
850
                    out = linear(x)
C
chentianyu03 已提交
851
                    loss = paddle.mean(out)
852
                    loss.backward()
853 854
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
855 856
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
857

858
            # train on static graph mode
859 860 861 862
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
863 864
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
865 866
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
867
                scheduler = paddle.optimizer.lr.ExponentialDecay(learning_rate=0.5, gamma=0.9, verbose=True)
868 869 870 871 872 873
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
874
                for batch_id in range(5):
875 876 877 878 879 880
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
881
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
882 883
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
884 885 886
    """

    def __init__(self, learning_rate, gamma, last_epoch=-1, verbose=False):
887
        assert gamma > 0.0 and gamma < 1.0, " 'gamma' must be in interval (0.0, 1.0) so that the learning rate will decay."
888
        self.gamma = gamma
889 890
        super(ExponentialDecay, self).__init__(learning_rate, last_epoch,
                                               verbose)
891 892 893 894 895

    def get_lr(self):
        return self.base_lr * (self.gamma**self.last_epoch)


896
class MultiStepDecay(LRScheduler):
897
    """
898
    Update the learning rate by ``gamma`` once ``epoch`` reaches one of the milestones.
899

G
guguguzi 已提交
900
    The algorithm can be described as the code below.
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916

    .. code-block:: text

        learning_rate = 0.5
        milestones = [30, 50]
        gamma = 0.1
        if epoch < 30:
            learning_rate = 0.5
        elif epoch < 50:
            learning_rate = 0.05
        else:
            learning_rate = 0.005

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
        milestones (tuple|list): List or tuple of each boundaries. Must be increasing.
G
guguguzi 已提交
917
        gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
918 919
            It should be less than 1.0. Default: 0.1.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
920
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
G
guguguzi 已提交
921

922 923

    Returns:
924
        ``MultiStepDecay`` instance to schedule learning rate.
925 926

    Examples:
G
guguguzi 已提交
927

928 929 930 931 932
        .. code-block:: python

            import paddle
            import numpy as np

933
            # train on default dynamic graph mode
934
            linear = paddle.nn.Linear(10, 10)
935 936
            scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=0.5, milestones=[2, 4, 6], gamma=0.8, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
937
            for epoch in range(20):
Z
Zhou Wei 已提交
938
                for batch_id in range(5):
939
                    x = paddle.uniform([10, 10])
940
                    out = linear(x)
C
chentianyu03 已提交
941
                    loss = paddle.mean(out)
942
                    loss.backward()
943 944
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
945 946
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
947

948
            # train on static graph mode
949 950 951 952
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
953 954
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
955 956
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
957
                scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=0.5, milestones=[2, 4, 6], gamma=0.8, verbose=True)
958 959 960 961 962 963
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
964
                for batch_id in range(5):
965 966 967 968 969 970
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
971
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
972 973
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
    """

    def __init__(self,
                 learning_rate,
                 milestones,
                 gamma=0.1,
                 last_epoch=-1,
                 verbose=False):
        if not isinstance(milestones, (tuple, list)):
            raise TypeError(
                "The type of 'milestones' in 'MultiStepDecay' must be 'tuple, list', but received %s."
                % type(milestones))

        if not all([
                milestones[i] < milestones[i + 1]
                for i in range(len(milestones) - 1)
        ]):
            raise ValueError('The elements of milestones must be incremented')
        if gamma >= 1.0:
            raise ValueError('gamma should be < 1.0.')

        self.milestones = milestones
        self.gamma = gamma
997
        super(MultiStepDecay, self).__init__(learning_rate, last_epoch, verbose)
998 999 1000 1001 1002 1003 1004 1005

    def get_lr(self):
        for i in range(len(self.milestones)):
            if self.last_epoch < self.milestones[i]:
                return self.base_lr * (self.gamma**i)
        return self.base_lr * (self.gamma**len(self.milestones))


1006
class StepDecay(LRScheduler):
1007 1008 1009
    """
    Update the learning rate of ``optimizer`` by ``gamma`` every ``step_size`` number of epoch.

G
guguguzi 已提交
1010
    The algorithm can be described as the code below.
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

    .. code-block:: text

        learning_rate = 0.5
        step_size = 30
        gamma = 0.1

        learning_rate = 0.5     if epoch < 30
        learning_rate = 0.05    if 30 <= epoch < 60
        learning_rate = 0.005   if 60 <= epoch < 90
        ...

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
1025
        step_size (int): the interval to update. It must be a positive integer.
G
guguguzi 已提交
1026
        gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
1027 1028
            It should be less than 1.0. Default: 0.1.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
1029
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
1030 1031

    Returns:
1032
        ``StepDecay`` instance to schedule learning rate.
1033 1034 1035


    Examples:
G
guguguzi 已提交
1036

1037 1038 1039 1040 1041
        .. code-block:: python

            import paddle
            import numpy as np

1042
            # train on default dynamic graph mode
1043
            linear = paddle.nn.Linear(10, 10)
1044 1045
            scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=5, gamma=0.8, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
1046
            for epoch in range(20):
Z
Zhou Wei 已提交
1047
                for batch_id in range(5):
1048
                    x = paddle.uniform([10, 10])
1049
                    out = linear(x)
C
chentianyu03 已提交
1050
                    loss = paddle.mean(out)
1051
                    loss.backward()
1052 1053
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
1054 1055
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
1056

1057
            # train on static graph mode
1058 1059 1060 1061
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
1062 1063
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
1064 1065
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
1066
                scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=5, gamma=0.8, verbose=True)
1067 1068 1069 1070 1071 1072
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
1073
                for batch_id in range(5):
1074 1075 1076 1077 1078 1079
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
1080
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
1081 1082
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
    """

    def __init__(self,
                 learning_rate,
                 step_size,
                 gamma=0.1,
                 last_epoch=-1,
                 verbose=False):
        if not isinstance(step_size, int):
            raise TypeError(
                "The type of 'step_size' must be 'int', but received %s." %
                type(step_size))
        if gamma >= 1.0:
            raise ValueError('gamma should be < 1.0.')

1098 1099
        assert step_size > 0 and isinstance(
            step_size, int), " 'step_size' must be a positive integer."
1100 1101
        self.step_size = step_size
        self.gamma = gamma
1102
        super(StepDecay, self).__init__(learning_rate, last_epoch, verbose)
1103 1104 1105 1106 1107 1108

    def get_lr(self):
        i = self.last_epoch // self.step_size
        return self.base_lr * (self.gamma**i)


1109
class LambdaDecay(LRScheduler):
1110 1111 1112
    """
    Sets the learning rate of ``optimizer`` by function ``lr_lambda`` . ``lr_lambda`` is funciton which receives ``epoch`` .

G
guguguzi 已提交
1113
    The algorithm can be described as the code below.
1114 1115 1116 1117 1118 1119

    .. code-block:: text

        learning_rate = 0.5        # init learning_rate
        lr_lambda = lambda epoch: 0.95 ** epoch

1120 1121 1122
        learning_rate = 0.5        # epoch 0, 0.5*0.95**0
        learning_rate = 0.475      # epoch 1, 0.5*0.95**1
        learning_rate = 0.45125    # epoch 2, 0.5*0.95**2
1123 1124 1125 1126 1127

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
        lr_lambda (function): A function which computes a factor by ``epoch`` , and then multiply the initial learning rate by this factor.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
1128
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
G
guguguzi 已提交
1129

1130
    Returns:
1131
        ``LambdaDecay`` instance to schedule learning rate.
1132 1133

    Examples:
G
guguguzi 已提交
1134

1135 1136 1137 1138 1139
        .. code-block:: python

            import paddle
            import numpy as np

1140
            # train on default dynamic graph mode
1141
            linear = paddle.nn.Linear(10, 10)
1142 1143
            scheduler = paddle.optimizer.lr.LambdaDecay(learning_rate=0.5, lr_lambda=lambda x:0.95**x, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
1144
            for epoch in range(20):
Z
Zhou Wei 已提交
1145
                for batch_id in range(5):
1146
                    x = paddle.uniform([10, 10])
1147
                    out = linear(x)
C
chentianyu03 已提交
1148
                    loss = paddle.mean(out)
1149
                    loss.backward()
1150 1151
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
1152 1153
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
1154

1155
            # train on static graph mode
1156 1157 1158 1159
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
1160 1161
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
1162 1163
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
1164
                scheduler = paddle.optimizer.lr.LambdaDecay(learning_rate=0.5, lr_lambda=lambda x:0.95**x, verbose=True)
1165 1166 1167 1168 1169 1170
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
1171
                for batch_id in range(5):
1172 1173 1174 1175 1176 1177
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
1178
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
1179 1180
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
1181 1182 1183 1184 1185 1186

    """

    def __init__(self, learning_rate, lr_lambda, last_epoch=-1, verbose=False):
        if not callable(lr_lambda):
            raise TypeError(
1187
                "The type of 'lr_lambda' in 'LambdaDecay' must be 'function', but received %s."
1188 1189 1190
                % type(lr_lambda))

        self.lr_lambda = lr_lambda
1191
        super(LambdaDecay, self).__init__(learning_rate, last_epoch, verbose)
1192 1193 1194 1195 1196

    def get_lr(self):
        return self.base_lr * self.lr_lambda(self.last_epoch)


1197
class ReduceOnPlateau(LRScheduler):
1198
    """
G
guguguzi 已提交
1199
    Reduce learning rate when ``metrics`` has stopped descending. Models often benefit from reducing the learning rate
1200 1201
    by 2 to 10 times once model performance has no longer improvement.

G
guguguzi 已提交
1202 1203 1204
    The ``metrics`` is the one which has been pass into ``step`` , it must be 1-D Tensor with shape [1]. When ``metrics``
    stop descending for a ``patience`` number of epochs, the learning rate will be reduced to ``learning_rate * factor`` .
    (Specially, ``mode`` can also be set to ``'max`` , in this case, when ``metrics`` stop ascending for a ``patience``
1205 1206 1207 1208 1209 1210
    number of epochs, the learning rate will be reduced.)

    In addition, After each reduction, it will wait a ``cooldown`` number of epochs before resuming above operation.

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
G
guguguzi 已提交
1211 1212
        mode (str, optional): ``'min'`` or ``'max'`` can be selected. Normally, it is ``'min'`` , which means that the
            learning rate will reduce when ``loss`` stops descending. Specially, if it's set to ``'max'`` ,  the learning
1213
            rate will reduce when ``loss`` stops ascending. Default: ``'min'`` .
G
guguguzi 已提交
1214
        factor (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * factor`` .
1215
            It should be less than 1.0. Default: 0.1.
G
guguguzi 已提交
1216
        patience (int, optional): When ``loss`` doesn't improve for this number of epochs, learing rate will be reduced.
1217
            Default: 10.
G
guguguzi 已提交
1218
        threshold (float, optional): ``threshold`` and ``threshold_mode`` will determine the minimum change of ``loss`` .
1219 1220
            This make tiny changes of ``loss`` will be ignored. Default: 1e-4.
        threshold_mode (str, optional): ``'rel'`` or ``'abs'`` can be selected. In ``'rel'`` mode, the minimum change of ``loss``
G
guguguzi 已提交
1221
            is ``last_loss * threshold`` , where ``last_loss`` is ``loss`` in last epoch. In ``'abs'`` mode, the minimum
1222 1223 1224
            change of ``loss`` is ``threshold`` . Default: ``'rel'`` .
        cooldown (int, optional): The number of epochs to wait before resuming normal operation. Default: 0.
        min_lr (float, optional): The lower bound of the learning rate after reduction. Default: 0.
G
guguguzi 已提交
1225
        epsilon (float, optional): Minimal decay applied to lr. If the difference between new and old lr is smaller than epsilon,
1226
            the update is ignored. Default: 1e-8.
1227 1228
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False``.

G
guguguzi 已提交
1229

1230
    Returns:
1231
        ``ReduceOnPlateau`` instance to schedule learning rate.
1232 1233 1234 1235 1236 1237 1238 1239


    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

1240
            # train on default dynamic graph mode
1241
            linear = paddle.nn.Linear(10, 10)
1242 1243
            scheduler = paddle.optimizer.lr.ReduceOnPlateau(learning_rate=1.0, factor=0.5, patience=5, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
1244
            for epoch in range(20):
Z
Zhou Wei 已提交
1245
                for batch_id in range(5):
1246
                    x = paddle.uniform([10, 10])
1247
                    out = linear(x)
C
chentianyu03 已提交
1248
                    loss = paddle.mean(out)
1249
                    loss.backward()
1250 1251
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
1252 1253
                    scheduler.step(loss)    # If you update learning rate each step
              # scheduler.step(loss)        # If you update learning rate each epoch
1254

1255
            # train on static graph mode
1256 1257 1258 1259
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
1260 1261
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
1262 1263
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
1264
                scheduler = paddle.optimizer.lr.ReduceOnPlateau(learning_rate=1.0, factor=0.5, patience=5, verbose=True)
1265 1266 1267 1268 1269 1270
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
1271
                for batch_id in range(5):
1272 1273 1274 1275 1276 1277
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
1278
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
1279 1280
                    scheduler.step(out[0])    # If you update learning rate each step
              # scheduler.step(out[0])        # If you update learning rate each epoch
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

    """

    def __init__(self,
                 learning_rate,
                 mode='min',
                 factor=0.1,
                 patience=10,
                 threshold=1e-4,
                 threshold_mode='rel',
                 cooldown=0,
                 min_lr=0,
                 epsilon=1e-8,
                 verbose=False):
        mode = mode.lower()
        if mode not in ['min', 'max']:
            raise ValueError('mode: ' + mode + ' is unknown!')
        self.mode = mode

        if factor >= 1.0:
            raise ValueError(
                'new_lr = origin_lr * gamma and gamma should be < 1.0.')
        self.factor = factor

        threshold_mode = threshold_mode.lower()
        if threshold_mode not in ['rel', 'abs']:
            raise ValueError('threshold mode: ' + threshold_mode +
                             ' is unknown!')
        self.threshold_mode = threshold_mode
        if not isinstance(learning_rate, (float, int)):
            raise TypeError(
1312
                "The type of 'learning_rate' in 'ReduceOnPlateau' must be 'float', but received %s."
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
                % type(learning_rate))

        self.patience = patience
        self.threshold = threshold
        self.threshold_mode = threshold_mode
        self.cooldown = cooldown
        self.min_lr = min_lr
        self.epsilon = epsilon

        self.cooldown_counter = 0
        self.best = None
        self.num_bad_epochs = 0

        # Can not call Parent __init__, so implement here.
        self.base_lr = float(learning_rate)
        self.last_lr = float(learning_rate)
        self.last_epoch = 0
        self.verbose = verbose
        self._var_name = None

    # "cooldown_counter / best / num_bad_epochs / last_epoch / last_lr" will be stored.
1334
    def state_keys(self):
1335 1336 1337 1338 1339 1340 1341
        self.keys = [
            'cooldown_counter', 'best', 'num_bad_epochs', 'last_epoch',
            'last_lr'
        ]

    def step(self, metrics, epoch=None):
        """
G
guguguzi 已提交
1342
        step should be called after `optimizer.step()` . It will update the learning rate in optimizer according to ``metrics`` .
1343 1344 1345
        The new learning rate will take effect on next epoch.

        Args:
G
guguguzi 已提交
1346
            metrics (Tensor|numpy.ndarray|float): Which will be monitored to determine whether the learning rate will reduce.
1347 1348 1349 1350 1351 1352
                If it stop descending for a ``patience`` number of epochs, the learning rate will reduce. If it's 'Tensor' or
                'numpy.ndarray', its shape must be [1].
            epoch (int, None): specify current epoch. Default: None. Auto-increment from last_epoch=-1.

        Returns:
            None
G
guguguzi 已提交
1353

1354
        Examples:
1355
            Please refer to the example of current LRScheduler.
1356 1357 1358 1359 1360 1361
        """
        if epoch is None:
            self.last_epoch = self.last_epoch + 1
        else:
            self.last_epoch = epoch

J
Jiabin Yang 已提交
1362
        if not _in_legacy_dygraph():
1363
            tmp = core.eager.Tensor
1364
        else:
1365 1366
            # need to declarate explicitly
            from paddle.framework import VarBase as Tensor
1367
            tmp = Tensor
1368
        # loss must be float, numpy.ndarray or 1-D Tensor with shape [1]
1369
        if isinstance(metrics, (tmp, numpy.ndarray)):
1370
            assert len(metrics.shape) == 1 and metrics.shape[0] == 1, "the metrics.shape " \
G
guguguzi 已提交
1371 1372 1373
                                                                      "should be (1L,), but the current metrics.shape is {}. Maybe that " \
                                                                      "you should call paddle.mean to process it first.".format(
                metrics.shape)
1374 1375 1376
        elif not isinstance(metrics,
                            (int, float, numpy.float32, numpy.float64)):
            raise TypeError(
1377 1378
                "metrics must be 'int', 'float', 'np.float', 'numpy.ndarray' or 'paddle.Tensor', but receive {}"
                .format(type(metrics)))
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

        if self.cooldown_counter > 0:
            self.cooldown_counter -= 1
        else:
            if self.best is None or self._is_better(metrics, self.best):
                self.best = metrics
                self.num_bad_epochs = 0
            else:
                self.num_bad_epochs += 1

            if self.num_bad_epochs > self.patience:
                self.cooldown_counter = self.cooldown
                self.num_bad_epochs = 0
                new_lr = max(self.last_lr * self.factor, self.min_lr)
                if self.last_lr - new_lr > self.epsilon:
                    self.last_lr = new_lr
                    if self.verbose:
                        print('Epoch {}: {} set learning rate to {}.'.format(
                            self.last_epoch, self.__class__.__name__,
                            self.last_lr))

    def _is_better(self, current, best):
        if self.mode == 'min' and self.threshold_mode == 'rel':
            return current < best - best * self.threshold

        elif self.mode == 'min' and self.threshold_mode == 'abs':
            return current < best - self.threshold

        elif self.mode == 'max' and self.threshold_mode == 'rel':
            return current > best + best * self.threshold

        else:
            return current > best + self.threshold


1414
class CosineAnnealingDecay(LRScheduler):
1415
    r"""
1416

G
guguguzi 已提交
1417 1418
    Set the learning rate using a cosine annealing schedule, where :math:`\eta_{max}` is set to
    the initial learning_rate. :math:`T_{cur}` is the number of epochs since the last restart in
1419
    SGDR.
1420 1421 1422 1423

    The algorithm can be described as following.

    .. math::
1424

1425 1426
        \eta_t & = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1
        + \cos\left(\frac{T_{cur}}{T_{max}}\pi\right)\right),
G
guguguzi 已提交
1427
        & T_{cur} \neq (2k+1)T_{max};
1428 1429 1430 1431

        \eta_{t+1} & = \eta_{t} + \frac{1}{2}(\eta_{max} - \eta_{min})
        \left(1 - \cos\left(\frac{1}{T_{max}}\pi\right)\right),
        & T_{cur} = (2k+1)T_{max}.
G
guguguzi 已提交
1432 1433

    It has been proposed in `SGDR: Stochastic Gradient Descent with Warm Restarts <https://arxiv.org/abs/1608.03983>`_.
1434
    Note that this only implements the cosine annealing part of SGDR, and not the restarts.
G
guguguzi 已提交
1435

1436 1437
    Args:
        learning_rate (float): The initial learning rate, that is :math:`\eta_{max}` . It can be set to python float or int number.
1438
        T_max (int): Maximum number of iterations. It is half of the decay cycle of learning rate. It must be a positive integer.
1439 1440
        eta_min (float|int, optional): Minimum learning rate, that is :math:`\eta_{min}` . Default: 0.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
1441
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
1442 1443

    Returns:
1444
        ``CosineAnnealingDecay`` instance to schedule learning rate.
1445 1446

    Examples:
G
guguguzi 已提交
1447

1448 1449 1450 1451 1452
        .. code-block:: python

            import paddle
            import numpy as np

1453
            # train on default dynamic graph mode
1454
            linear = paddle.nn.Linear(10, 10)
1455 1456
            scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=0.5, T_max=10, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
1457
            for epoch in range(20):
Z
Zhou Wei 已提交
1458
                for batch_id in range(5):
1459
                    x = paddle.uniform([10, 10])
1460
                    out = linear(x)
C
chentianyu03 已提交
1461
                    loss = paddle.mean(out)
1462
                    loss.backward()
1463 1464
                    sgd.step()
                    sgd.clear_gradients()
Z
Zhou Wei 已提交
1465 1466
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
1467

1468
            # train on static graph mode
1469 1470 1471 1472
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
1473 1474
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
1475 1476
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
1477
                scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=0.5, T_max=10, verbose=True)
1478 1479 1480 1481 1482 1483
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(20):
Z
Zhou Wei 已提交
1484
                for batch_id in range(5):
1485 1486 1487 1488 1489 1490
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
1491
                        fetch_list=loss.name)
Z
Zhou Wei 已提交
1492 1493
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
    """

    def __init__(self,
                 learning_rate,
                 T_max,
                 eta_min=0,
                 last_epoch=-1,
                 verbose=False):
        if not isinstance(T_max, int):
            raise TypeError(
1504
                "The type of 'T_max' in 'CosineAnnealingDecay' must be 'int', but received %s."
1505 1506 1507
                % type(T_max))
        if not isinstance(eta_min, (float, int)):
            raise TypeError(
1508
                "The type of 'eta_min' in 'CosineAnnealingDecay' must be 'float, int', but received %s."
1509
                % type(eta_min))
1510 1511
        assert T_max > 0 and isinstance(
            T_max, int), " 'T_max' must be a positive integer."
1512 1513
        self.T_max = T_max
        self.eta_min = float(eta_min)
1514 1515
        super(CosineAnnealingDecay, self).__init__(learning_rate, last_epoch,
                                                   verbose)
1516 1517 1518 1519 1520

    def get_lr(self):
        if self.last_epoch == 0:
            return self.base_lr
        elif (self.last_epoch - 1 - self.T_max) % (2 * self.T_max) == 0:
1521 1522
            return self.last_lr + (self.base_lr - self.eta_min) * (
                1 - math.cos(math.pi / self.T_max)) / 2
1523 1524 1525 1526 1527 1528

        return (1 + math.cos(math.pi * self.last_epoch / self.T_max)) / (
            1 + math.cos(math.pi * (self.last_epoch - 1) / self.T_max)) * (
                self.last_lr - self.eta_min) + self.eta_min

    def _get_closed_form_lr(self):
1529 1530
        return self.eta_min + (self.base_lr - self.eta_min) * (
            1 + math.cos(math.pi * self.last_epoch / self.T_max)) / 2
G
guguguzi 已提交
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591


class MultiplicativeDecay(LRScheduler):
    """
    Multiply the learning rate of ``optimizer`` by the factor given in function ``lr_lambda`` .

    The algorithm can be described as the code below.

    .. code-block:: text

        learning_rate = 0.5        # init learning_rate
        lr_lambda = lambda epoch: 0.95

        learning_rate = 0.5        # epoch 0,
        learning_rate = 0.475      # epoch 1, 0.5*0.95
        learning_rate = 0.45125    # epoch 2, 0.475*0.95

    Args:
        learning_rate (float): The initial learning rate. It is a python float number.
        lr_lambda (function): A function which computes a factor by ``epoch`` , and then multiply the last learning rate by this factor.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .

    Returns:
        ``MultiplicativeDecay`` instance to schedule learning rate.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            # train on default dynamic graph mode
            linear = paddle.nn.Linear(10, 10)
            scheduler = paddle.optimizer.lr.MultiplicativeDecay(learning_rate=0.5, lr_lambda=lambda x:0.95, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
            for epoch in range(20):
                for batch_id in range(5):
                    x = paddle.uniform([10, 10])
                    out = linear(x)
                    loss = paddle.mean(out)
                    loss.backward()
                    sgd.step()
                    sgd.clear_gradients()
                    scheduler.step()    # If you update learning rate each step
              # scheduler.step()        # If you update learning rate each epoch

    """

    def __init__(self, learning_rate, lr_lambda, last_epoch=-1, verbose=False):
        if not callable(lr_lambda):
            raise TypeError(
                "The type of 'lr_lambda' in 'MultiplicativeDecay' must be 'function', but received %s."
                % type(lr_lambda))

        self.lr_lambda = lr_lambda
        super(MultiplicativeDecay, self).__init__(learning_rate, last_epoch,
                                                  verbose)

    def get_lr(self):
1592 1593 1594 1595
        cur_lr = self.base_lr
        for epoch in range(1, self.last_epoch + 1):
            cur_lr = cur_lr * self.lr_lambda(epoch)
        return cur_lr
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695


class OneCycleLR(LRScheduler):
    r"""
    Sets the learning rate according to the one cycle learning rate scheduler.
    The scheduler adjusts the learning rate from an initial learning rate to the maximum learning rate and then
    from that maximum learning rate to the minimum learning rate, which is much less than the initial learning rate.

    It has been proposed in `Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates <https://arxiv.org/abs/1708.07120>`_.

    Please note that the default behaviour of this scheduler follows the fastai implementation of one cycle,
    which claims that “unpublished work has shown even better results by using only two phases”.
    If you want the behaviour of this scheduler to be consistent with the paper, please set ``three_phase=True`` .

    Also note that you should update learning rate each step.

    Args:
        max_learning_rate (float): The maximum learning rate. It is a python float number.
             Functionally, it defines the initial learning rate by ``divide_factor`` .
        total_steps (int): Number of total training steps.
        divide_factor (float): Initial learning rate will be determined by initial_learning_rate = max_learning_rate / divide_factor. Default: 25.
        end_learning_rate (float, optional): The minimum learning rate during training, it should be much less than initial learning rate.
        phase_pct (float): The percentage of total steps which used to increasing learning rate. Default: 0.3.
        anneal_strategy (str, optional): Strategy of adjusting learning rate.'cos' for cosine annealing,
            'linear' for linear annealing. Default: 'cos'.
        three_phase (bool, optional): Whether to use three phase.
            If ``True``:
                1. The learning rate will first increase from initial learning rate to maximum learning rate.
                2. Then it will decrease to initial learning rate. Number of step in this phase is the same as the one in first phase.
                3. Finally, it will decrease to minimum learning rate which is much less than initial learning rate.
            If ``False``:
                1. The learning rate will increase to maximum learning rate.
                2. Then it will directly decrease to minimum learning rate.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .

    Returns:
        ``OneCycleLR`` instance to schedule learning rate.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            # train on default dynamic graph mode
            linear = paddle.nn.Linear(10, 10)
            scheduler = paddle.optimizer.lr.OneCycleLR(max_learning_rate=1.0, total_steps=100, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
            for epoch in range(5):
                for batch_id in range(20):
                    x = paddle.uniform([10, 10])
                    out = linear(x)
                    loss = paddle.mean(out)
                    loss.backward()
                    sgd.step()
                    sgd.clear_gradients()
                    scheduler.step()        # You should update learning rate each step

            # train on static graph mode
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
                scheduler = paddle.optimizer.lr.OneCycleLR(max_learning_rate=1.0, total_steps=100, verbose=True)
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(5):
                for batch_id in range(20):
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
                        fetch_list=loss.name)
                    scheduler.step()    # You should update learning rate each step
    """

    def __init__(self,
                 max_learning_rate,
                 total_steps,
                 divide_factor=25.,
                 end_learning_rate=0.0001,
                 phase_pct=0.3,
                 anneal_strategy='cos',
                 three_phase=False,
                 last_epoch=-1,
                 verbose=False):
        # Check type and value of max_learning_rate
        if not isinstance(max_learning_rate, (float, int)):
            raise TypeError(
                "'max_learning_rate' must be 'float' or 'int', but received {}".
1696
                format(type(max_learning_rate)))
1697 1698 1699 1700 1701 1702 1703
        if max_learning_rate < 0:
            raise ValueError("'max_learning_rate' must be a positive integer.")

        # Check type and value of end_learning_rate
        if not isinstance(end_learning_rate, (float, int)):
            raise TypeError(
                "'end_learning_rate' must be 'float' or 'int', but received {}".
1704
                format(type(end_learning_rate)))
1705 1706 1707 1708 1709
        if end_learning_rate < 0:
            raise ValueError("'end_learning_rate' must be a positive integer.")

        # Check type and value of total_steps
        if not isinstance(total_steps, int):
1710 1711 1712
            raise TypeError(
                "'total_step' must be 'int', but received {}".format(
                    type(total_steps)))
1713 1714 1715 1716 1717 1718
        if total_steps <= 0:
            raise ValueError("'total_step' must be a positive integer.")
        self.total_steps = total_steps

        # Check type and value of pac_start
        if not isinstance(phase_pct, float):
1719 1720 1721
            raise TypeError(
                "'phase_pct' must be 'float', but received {}".format(
                    type(phase_pct)))
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
        if phase_pct < 0 or phase_pct > 1:
            raise ValueError(
                "'phase_pct' must be between 0 and 1, but received {}".format(
                    phase_pct))

        # Check type and value of divide_factor
        if not isinstance(divide_factor, (float, int)):
            raise TypeError(
                "'divide_factor' must be 'float' or 'int', but received {}".
                format(type(divide_factor)))

        initial_lr = max_learning_rate / float(divide_factor)
        min_lr = float(end_learning_rate)

        if three_phase:
            if phase_pct >= 0.5:
                raise ValueError(
                    "When three_phase is True, 'phase_pct' must be less than 0.5"
                )
            # start step and end step of each phase.
            self._step_config = [
                0,
                phase_pct * self.total_steps - 1,
                2 * phase_pct * self.total_steps - 2,
                self.total_steps - 1,
                self.total_steps - 1,  # for the last step.
            ]
            # step size of each phase.
            self._steps_size = [
                self._step_config[1] - self._step_config[0],
                self._step_config[2] - self._step_config[1],
                self._step_config[3] - self._step_config[2],
                self._step_config[3] -
                self._step_config[2],  # for the last step.
            ]
            # start lr and end lr of each phase.
            self._lr_config = [
                initial_lr, max_learning_rate, initial_lr, min_lr
            ]
        else:
            self._step_config = [
                0, phase_pct * self.total_steps - 1, self.total_steps - 1,
                self.total_steps - 1
            ]
            self._steps_size = [
                self._step_config[1] - self._step_config[0],
                self._step_config[2] - self._step_config[1],
                self._step_config[2] - self._step_config[1],
            ]
            self._lr_config = [initial_lr, max_learning_rate, min_lr]

        # Check anneal_strategy
        if anneal_strategy == 'cos':
            self.anneal_func = self._cos_annealing
        elif anneal_strategy == 'linear':
            self.anneal_func = self._linear_annealing
        else:
            raise ValueError(
1780 1781
                "'anneal_strategy' must by one of 'cos' or 'linear', but received {}"
                .format(anneal_strategy))
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
        super(OneCycleLR, self).__init__(initial_lr, last_epoch, verbose)

    def _cos_annealing(self, start_lr, end_lr, pct):
        cos_out = math.cos(math.pi * pct) + 1
        return end_lr + (start_lr - end_lr) / 2.0 * cos_out

    def _linear_annealing(self, start_lr, end_lr, pct):
        return (end_lr - start_lr) * pct + start_lr

    def get_lr(self):
        current_step = self.last_epoch

        if current_step > self.total_steps:
            raise ValueError(
                "Tried to step {} times. However the number of total steps is {}"
                .format(current_step, self.total_steps))

1799 1800
        for (i, (end_step, step_size)) in enumerate(
                zip(self._step_config[1:], self._steps_size)):
1801 1802 1803 1804 1805 1806
            # i == len(self._lr_config) - 2 catch the last step, otherwise it will return None.
            if current_step <= end_step or i == len(self._lr_config) - 2:
                # self._step_config[i] means start step of a phase.
                percentage = (current_step - self._step_config[i]) / step_size
                return self.anneal_func(self._lr_config[i],
                                        self._lr_config[i + 1], percentage)
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008


class CyclicLR(LRScheduler):
    r"""
    Set the learning rate according to the cyclic learning rate (CLR) scheduler.
    The scheduler regards the process of learning rate adjustment as one cycle after another.
    It cycles the learning rate between two boundaries with a constant frequency.
    The distance between the two boundaries can be scaled on a per-iteration or per-cycle basis.

    It has been proposed in `Cyclic Learning Rates for Training Neural Networks <https://arxiv.org/abs/1506.01186>`_.

    According to the paper, the cyclic learning rate schedule has three build-in scale methods:

    * "triangular": A basic triangular cycle without any amplitude scaling.
    * "triangular2": A basic triangular cycle that reduce initial amplitude by half each cycle.
    * "exp_range": A cycle that scales initial amplitude by scale function which is defined as :math:`gamma^{iterations}` .

    The initial amplitude is defined as max_learning_rate - base_learning_rate.
    Also note that you should update learning rate each step.

    Args:
        base_learning_rate (float): Initial learning rate, which is the lower boundary in the cycle. The paper recommends
            that set the base_learning_rate to 1/3 or 1/4 of max_learning_rate.
        max_learning_rate (float): Maximum learning rate in the cycle. It defines the cycle amplitude as above.
            Since there is some scaling operation during process of learning rate adjustment,
            max_learning_rate may not actually be reached.
        step_size_up (int): Number of training steps, which is used to increase learning rate in a cycle.
            The step size of one cycle will be defined by step_size_up + step_size_down. According to the paper, step
            size should be set as at least 3 or 4 times steps in one epoch.
        step_size_down (int, optional): Number of training steps, which is used to decrease learning rate in a cycle.
            If not specified, it's value will initialize to `` step_size_up `` . Default: None
        mode (str, optional): one of 'triangular', 'triangular2' or 'exp_range'.
            If scale_fn is specified, this argument will be ignored. Default: 'triangular'
        exp_gamma (float): Constant in 'exp_range' scaling function: exp_gamma**iterations. Used only when mode = 'exp_range'. Default: 1.0
        scale_fn (function, optional): A custom scaling function, which is used to replace three build-in methods.
            It should only have one argument. For all x >= 0, 0 <= scale_fn(x) <= 1.
            If specified, then 'mode' will be ignored. Default: None
        scale_mode (str, optional): One of 'cycle' or 'iterations'. Defines whether scale_fn is evaluated on cycle
            number or cycle iterations (total iterations since start of training). Default: 'cycle'
        last_epoch (int, optional): The index of last epoch. Can be set to restart training.Default: -1, means initial learning rate.
        verbose: (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .

    Returns:
    ``CyclicLR`` instance to schedule learning rate.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            # train on default dynamic graph mode
            linear = paddle.nn.Linear(10, 10)
            scheduler = paddle.optimizer.lr.CyclicLR(base_learning_rate=0.5, max_learning_rate=1.0, step_size_up=15, step_size_down=5, verbose=True)
            sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
            for epoch in range(5):
                for batch_id in range(20):
                    x = paddle.uniform([10, 10])
                    out = linear(x)
                    loss = paddle.mean(out)
                    loss.backward()
                    sgd.step()
                    sgd.clear_gradients()
                    scheduler.step()        # You should update learning rate each step

            # train on static graph mode
            paddle.enable_static()
            main_prog = paddle.static.Program()
            start_prog = paddle.static.Program()
            with paddle.static.program_guard(main_prog, start_prog):
                x = paddle.static.data(name='x', shape=[None, 4, 5])
                y = paddle.static.data(name='y', shape=[None, 4, 5])
                z = paddle.static.nn.fc(x, 100)
                loss = paddle.mean(z)
                scheduler = paddle.optimizer.lr.CyclicLR(base_learning_rate=0.5,
                    max_learning_rate=1.0, step_size_up=15, step_size_down=5, verbose=True)
                sgd = paddle.optimizer.SGD(learning_rate=scheduler)
                sgd.minimize(loss)

            exe = paddle.static.Executor()
            exe.run(start_prog)
            for epoch in range(5):
                for batch_id in range(20):
                    out = exe.run(
                        main_prog,
                        feed={
                            'x': np.random.randn(3, 4, 5).astype('float32'),
                            'y': np.random.randn(3, 4, 5).astype('float32')
                        },
                        fetch_list=loss.name)
                    scheduler.step()    # You should update learning rate each step
    """

    def __init__(self,
                 base_learning_rate,
                 max_learning_rate,
                 step_size_up,
                 step_size_down=None,
                 mode='triangular',
                 exp_gamma=1.,
                 scale_fn=None,
                 scale_mode='cycle',
                 last_epoch=-1,
                 verbose=False):
        # check type and value of max_learning_rate
        if not isinstance(max_learning_rate, (float, int)):
            raise TypeError(
                "'max_learning_rate' must be 'float' or 'int', but received {}".
                format(type(max_learning_rate)))
        if max_learning_rate < 0:
            raise ValueError(
                "'max_learning_rate' must be a positive integer, but received {}"
                .format(max_learning_rate))

        # check type and value of step_size_up
        if not isinstance(step_size_up, int):
            raise TypeError(
                "The type of 'step_size_up' must be int, but received {}".
                format(type(step_size_up)))
        if step_size_up <= 0:
            raise ValueError(
                "'step_size_up' must be a positive integer, but received {}".
                format(step_size_up))

        # check type and value of step_size_down
        if step_size_down is not None:
            if not isinstance(step_size_down, int):
                raise TypeError(
                    "The type of 'step_size_down' must be int, but received {}".
                    format(type(step_size_down)))
            if step_size_down <= 0:
                raise ValueError(
                    "'step_size_down' must be a positive integer, but received {}"
                    .format(step_size_down))

        # check type of exp_gamma
        if not isinstance(exp_gamma, float):
            raise TypeError(
                "The type of 'exp_gamma' must be float, but received {}".format(
                    type(exp_gamma)))

        step_size_up = float(step_size_up)
        step_size_down = float(
            step_size_down) if step_size_down is not None else step_size_up

        self.cycle_size = step_size_up + step_size_down
        self.step_up_pct = step_size_up / self.cycle_size
        self.max_lr = float(max_learning_rate)
        self.amplitude = self.max_lr - base_learning_rate

        if mode not in ['triangular', 'triangular2', 'exp_range'
                        ] and scale_fn is None:
            raise ValueError(
                "'mode' is invalid and 'scale_fn' is not specified, make sure one of 'mode' or 'scale_fn' is valid"
            )
        if scale_mode not in ['cycle', 'iterations']:
            raise ValueError(
                "'scale_mode' must be one of 'cycle' or 'iterations")

        self.mode = mode
        self.gamma = exp_gamma  # only for exp_range mode

        if scale_fn is None:
            if self.mode == 'triangular':
                self.scale_fn = self._triangular_scale_fn
                self.scale_mode = 'cycle'
            elif self.mode == 'triangular2':
                self.scale_fn = self._triangular2_scale_fn
                self.scale_mode = 'cycle'
            elif self.mode == 'exp_range':
                self.scale_fn = self._exp_range_scale_fn
                self.scale_mode = 'iterations'
        else:
            self.scale_fn = scale_fn
            self.scale_mode = scale_mode
        super().__init__(base_learning_rate, last_epoch, verbose)

    def _triangular_scale_fn(self, x):
        return 1.

    def _triangular2_scale_fn(self, x):
        return 1 / (2.**(x - 1))

    def _exp_range_scale_fn(self, x):
        return self.gamma**x

    def get_lr(self):
        iterations = self.last_epoch

        cycle = 1 + iterations // self.cycle_size
        pct_per_cycle = 1. + iterations / self.cycle_size - cycle

        if pct_per_cycle <= self.step_up_pct:
            scale_factor = pct_per_cycle / self.step_up_pct
        else:
            scale_factor = (1 - pct_per_cycle) / (1 - self.step_up_pct)

        base_height = self.amplitude * scale_factor

        lr = self.base_lr + base_height * self.scale_fn(eval(self.scale_mode))

        return lr