mean_iou_op.cu 5.9 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/mean_iou_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/gpu_info.h"

namespace paddle {
namespace operators {

using platform::PADDLE_CUDA_NUM_THREADS;

#define CUDA_1D_KERNEL_LOOP(i, n)                              \
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
       i += blockDim.x * gridDim.x)

template <typename T>
__global__ void CountCUDAKernel(const int num_classes, const int count,
                                const T* predictions, const T* labels,
                                int* wrong, int* correct) {
  extern __shared__ int blcok_cache[];
  int* wrong_c = blcok_cache;
  int* correct_c = blcok_cache + num_classes;
  // init cache
  for (int i = threadIdx.x; i < num_classes * 2; i += blockDim.x) {
    blcok_cache[i] = 0;
  }
  __syncthreads();

  T pred;
  T label;
  CUDA_1D_KERNEL_LOOP(i, count) {
    pred = predictions[i];
    label = labels[i];
    if (pred == label) {
      atomicAdd(correct_c + pred, 1);
    } else {
      atomicAdd(wrong_c + pred, 1);
      atomicAdd(wrong_c + label, 1);
    }
  }

  __syncthreads();

  for (int i = threadIdx.x; i < num_classes; i += blockDim.x) {
    atomicAdd(wrong + i, wrong_c[i]);
    atomicAdd(correct + i, correct_c[i]);
  }
}

__global__ void ComputeIoUCUDAKernel(const int num_classes, int* wrong,
                                     int* correct, float* ious, float* iou) {
  __shared__ int valid_count_c;
  if (threadIdx.x == 0) {
    valid_count_c = 0;
  }
  __syncthreads();
  CUDA_1D_KERNEL_LOOP(i, num_classes) {
    int wrong_n = wrong[i];
    int correct_n = correct[i];
    int denominator = wrong_n + correct_n;
    if (denominator > 0) {
      atomicAdd(&valid_count_c, 1);
      ious[i] = static_cast<float>(correct_n) / denominator;
    } else {
      ious[i] = 0;
    }
  }
  __syncthreads();
  if (threadIdx.x == 0) {
    float iou_sum = 0;
    for (int i = 0; i < num_classes; ++i) {
      iou_sum += ious[i];
    }
    iou[0] += iou_sum / valid_count_c;
  }
}

template <typename T>
class MeanIoUCUDAOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
95 96
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto& place = *dev_ctx.eigen_device();
W
whs 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    // get input and output tensor
    auto* predictions = ctx.Input<Tensor>("Predictions");
    auto* labels = ctx.Input<Tensor>("Labels");
    auto* out_mean_iou = ctx.Output<Tensor>("OutMeanIou");
    auto* out_wrong = ctx.Output<Tensor>("OutWrong");
    auto* out_correct = ctx.Output<Tensor>("OutCorrect");
    int num_classes = static_cast<int>(ctx.Attr<int>("num_classes"));

    // Get data ptr
    const T* predictions_data = predictions->data<T>();
    const T* labels_data = labels->data<T>();
    int* out_wrong_data = out_wrong->mutable_data<int>(ctx.GetPlace());
    int* out_correct_data = out_correct->mutable_data<int>(ctx.GetPlace());
    float* out_mean_iou_data =
        out_mean_iou->mutable_data<float>(ctx.GetPlace());

    // Get Eigen tensor
    auto out_mean_iou_t = EigenTensor<float, 1>::From(*out_mean_iou);
    auto out_wrong_t = EigenTensor<int, 1>::From(*out_wrong);
    auto out_correct_t = EigenTensor<int, 1>::From(*out_correct);

118 119 120 121 122
    // Temporary memory
    auto& allocator =
        platform::DeviceTemporaryAllocator::Instance().Get(dev_ctx);
    auto tmp_ious_data = allocator.Allocate(num_classes * sizeof(float));
    float* ious_data = static_cast<float*>(tmp_ious_data->ptr());
W
whs 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

    // Init out_wrong, out_correct and out_mean_iou
    out_wrong_t.device(place) = out_wrong_t.constant(0);
    out_correct_t.device(place) = out_correct_t.constant(0);
    out_mean_iou_t.device(place) = out_mean_iou_t.constant(0.0f);

    // collect pre wrong, correct and mean_iou
    auto in_mean_ious = ctx.MultiInput<Tensor>("InMeanIou");
    for (int i = 0; i < in_mean_ious.size(); ++i) {
      out_mean_iou_t.device(place) +=
          EigenTensor<float, 1>::From(*in_mean_ious[i]);
    }
    auto in_wrongs = ctx.MultiInput<Tensor>("InWrongs");
    for (int i = 0; i < in_wrongs.size(); ++i) {
      out_wrong_t.device(place) += EigenTensor<int, 1>::From(*in_wrongs[i]);
    }
    auto in_corrects = ctx.MultiInput<Tensor>("InCorrects");
    for (int i = 0; i < in_corrects.size(); ++i) {
      out_correct_t.device(place) += EigenTensor<int, 1>::From(*in_corrects[i]);
    }
    // compute
    auto stream = ctx.cuda_device_context().stream();
    int block = PADDLE_CUDA_NUM_THREADS;
    int grid = (predictions->numel() + block - 1) / block;
    int cache_size = (num_classes * 2 + 1) * sizeof(int);
    CountCUDAKernel<T><<<grid, block, cache_size, stream>>>(
        num_classes, predictions->numel(), predictions_data, labels_data,
        out_wrong_data, out_correct_data);
151

W
whs 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164
    ComputeIoUCUDAKernel<<<1, block, 0, stream>>>(num_classes, out_wrong_data,
                                                  out_correct_data, ious_data,
                                                  out_mean_iou_data);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(mean_iou, ops::MeanIoUCUDAOpKernel<int>,
                        ops::MeanIoUCUDAOpKernel<int64_t>,
                        ops::MeanIoUCUDAOpKernel<int32_t>);