instance_norm_op.cu 31.8 KB
Newer Older
L
lvmengsi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <algorithm>
#include <cfloat>
#include <string>
#include <vector>
19
#ifdef __NVCC__
L
lvmengsi 已提交
20
#include "cub/cub.cuh"
21 22 23 24 25
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
L
lvmengsi 已提交
26 27
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/operators/instance_norm_op.h"
28
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
29
#include "paddle/phi/kernels/funcs/math_function.h"
L
lvmengsi 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using DataLayout = framework::DataLayout;
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;
template <typename T>
using BatchNormParamType = typename CudnnDataType<T>::BatchNormParamType;

template <typename T>
static __global__ void repeat_param(const T *input, T *output,
                                    const int repeat_num, const int C) {
44
  CUDA_KERNEL_LOOP(i, repeat_num * C) {
L
lvmengsi 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    int index = i % C;
    output[i] = input[index];
  }
}

template <typename T, int BlockDim, bool AVG>
static __global__ void add_param(const T *input, T *output,
                                 const int repeat_num, const int C) {
  typedef cub::BlockReduce<T, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage ou_storage;
  for (int i = blockIdx.x; i < C; i += gridDim.x) {
    T ou = static_cast<T>(0);
    for (int j = threadIdx.x; j < repeat_num; j += blockDim.x) {
      const int index = j * C + i;
      ou += static_cast<T>(input[index]);
    }
    ou = BlockReduce(ou_storage).Reduce(ou, cub::Sum());
    if (threadIdx.x == 0) {
      output[i] = ou;
    }
    __syncthreads();

    if (AVG) {
      output[i] /= repeat_num;
    }
  }
}

template <typename T>
class InstanceNormKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
C
ceci3 已提交
78 79 80
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        platform::errors::PreconditionNotMet("It must be CUDAPlace."));
L
lvmengsi 已提交
81 82 83 84
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));

    auto *x = ctx.Input<Tensor>("X");
    auto &x_dims = x->dims();
C
ceci3 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
                      platform::errors::InvalidArgument(
                          "The `shape` in InstanceNormOp is invalid: "
                          "the size of X's dimensions must greater than "
                          "or equal to 2. But received: "
                          "the size of X's dimensions is [%d]",
                          x_dims.size()));
    PADDLE_ENFORCE_LE(x_dims.size(), 5,
                      platform::errors::InvalidArgument(
                          "The `shape` in InstanceNormOp is invalid: "
                          "the size of X's dimensions must smaller than"
                          "or equal to 5. But received: "
                          "the size of X's dimensions is [%d]",
                          x_dims.size()));
L
lvmengsi 已提交
99 100 101 102 103 104 105 106 107
    int N, C, H, W, D;
    ExtractNCWHD(x_dims, DataLayout::kNCHW, &N, &C, &H, &W, &D);
    int NxC = N * C;
    Tensor x_tmp;
    x_tmp.ShareDataWith(*x).Resize({1, NxC, H, W, D});

    auto *y = ctx.Output<Tensor>("Y");
    y->mutable_data<T>(ctx.GetPlace());

108 109 110 111
#ifdef PADDLE_WITH_HIP
    miopenTensorDescriptor_t data_desc_;
    miopenTensorDescriptor_t in_param_desc_;

112
    PADDLE_ENFORCE_GPU_SUCCESS(
113
        platform::dynload::miopenCreateTensorDescriptor(&data_desc_));
114
    PADDLE_ENFORCE_GPU_SUCCESS(
115 116
        platform::dynload::miopenCreateTensorDescriptor(&in_param_desc_));
#else
L
lvmengsi 已提交
117 118 119
    cudnnTensorDescriptor_t data_desc_;
    cudnnTensorDescriptor_t in_param_desc_;

120
    PADDLE_ENFORCE_GPU_SUCCESS(
121
        platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
122
    PADDLE_ENFORCE_GPU_SUCCESS(
L
lvmengsi 已提交
123
        platform::dynload::cudnnCreateTensorDescriptor(&in_param_desc_));
124
#endif
L
lvmengsi 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
      LOG(ERROR) << "Provided epsilon is smaller than "
                 << "CUDNN_BN_MIN_EPSILON. Setting it to "
                 << "CUDNN_BN_MIN_EPSILON instead.";
    }
    epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);

    VLOG(3) << "Setting descriptors.";
    std::vector<int> dims;
    std::vector<int> strides;
    dims = {1, NxC, H, W, D};
    strides = {NxC * H * W * D, H * W * D, W * D, D, 1};

    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();

140
#ifdef PADDLE_WITH_HIP
141
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::miopenSetTensorDescriptor(
142 143 144
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, const_cast<int *>(dims.data()),
        const_cast<int *>(strides.data())));
145
    PADDLE_ENFORCE_GPU_SUCCESS(
146 147 148
        platform::dynload::miopenDeriveBNTensorDescriptor(
            in_param_desc_, data_desc_, miopenBNSpatial));
#else
149
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
L
lvmengsi 已提交
150 151
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
152 153
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnDeriveBNTensorDescriptor(
        in_param_desc_, data_desc_, CUDNN_BATCHNORM_SPATIAL));
154
#endif
L
lvmengsi 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");

    Tensor scale_tmp =
        ctx.AllocateTmpTensor<T, platform::CUDADeviceContext>({NxC}, dev_ctx);
    scale_tmp.mutable_data<T>(ctx.GetPlace());
    Tensor bias_tmp =
        ctx.AllocateTmpTensor<T, platform::CUDADeviceContext>({NxC}, dev_ctx);
    bias_tmp.mutable_data<T>(ctx.GetPlace());

    const int n = x->numel();
    const int block = 512;
    int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
    const int max_blocks = std::max(max_threads / block, 1);
    const int grid = std::min((NxC + block - 1) / block, max_blocks);

172
    phi::funcs::SetConstant<platform::CUDADeviceContext, T> set_constant;
C
ceci3 已提交
173 174 175 176 177 178 179 180 181 182 183 184
    if (scale) {
      repeat_param<T><<<grid, block, 0, dev_ctx.stream()>>>(
          scale->data<T>(), scale_tmp.data<T>(), N, C);
    } else {
      set_constant(dev_ctx, &scale_tmp, static_cast<T>(1));
    }
    if (bias) {
      repeat_param<T><<<grid, block, 0, dev_ctx.stream()>>>(
          bias->data<T>(), bias_tmp.data<T>(), N, C);
    } else {
      set_constant(dev_ctx, &bias_tmp, static_cast<T>(0));
    }
L
lvmengsi 已提交
185 186 187

    auto handle = dev_ctx.cudnn_handle();

188
    phi::funcs::SetConstant<platform::CUDADeviceContext, BatchNormParamType<T>>
L
lvmengsi 已提交
189 190 191 192 193 194 195 196 197
        functor;

    auto *saved_mean = ctx.Output<Tensor>("SavedMean");
    auto *saved_variance = ctx.Output<Tensor>("SavedVariance");
    saved_mean->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
    saved_variance->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
    functor(dev_ctx, saved_mean, static_cast<BatchNormParamType<T>>(0));
    functor(dev_ctx, saved_variance, static_cast<BatchNormParamType<T>>(0));

198
#ifdef PADDLE_WITH_HIP
199
    PADDLE_ENFORCE_GPU_SUCCESS(
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
        platform::dynload::miopenBatchNormalizationForwardTraining(
            handle, miopenBNSpatial,
            const_cast<void *>(
                static_cast<const void *>(CudnnDataType<T>::kOne())),
            const_cast<void *>(
                static_cast<const void *>(CudnnDataType<T>::kZero())),
            data_desc_, static_cast<const void *>(x_tmp.template data<T>()),
            data_desc_,
            static_cast<void *>(y->template mutable_data<T>(ctx.GetPlace())),
            in_param_desc_,
            const_cast<void *>(static_cast<const void *>(
                scale_tmp.template data<BatchNormParamType<T>>())),
            const_cast<void *>(static_cast<const void *>(
                bias_tmp.template data<BatchNormParamType<T>>())),
            0, nullptr, nullptr, epsilon,
            static_cast<void *>(
                saved_mean->template mutable_data<BatchNormParamType<T>>(
                    ctx.GetPlace())),
            static_cast<void *>(
                saved_variance->template mutable_data<BatchNormParamType<T>>(
                    ctx.GetPlace()))));

222
    PADDLE_ENFORCE_GPU_SUCCESS(
223
        platform::dynload::miopenDestroyTensorDescriptor(data_desc_));
224
    PADDLE_ENFORCE_GPU_SUCCESS(
225 226
        platform::dynload::miopenDestroyTensorDescriptor(in_param_desc_));
#else
227
    PADDLE_ENFORCE_GPU_SUCCESS(
228 229 230 231 232 233 234 235 236 237 238 239
        platform::dynload::cudnnBatchNormalizationForwardTraining(
            handle, CUDNN_BATCHNORM_SPATIAL, CudnnDataType<T>::kOne(),
            CudnnDataType<T>::kZero(), data_desc_, x_tmp.template data<T>(),
            data_desc_, y->template mutable_data<T>(ctx.GetPlace()),
            in_param_desc_, scale_tmp.template data<BatchNormParamType<T>>(),
            bias_tmp.template data<BatchNormParamType<T>>(), 0, nullptr,
            nullptr, epsilon,
            saved_mean->template mutable_data<BatchNormParamType<T>>(
                ctx.GetPlace()),
            saved_variance->template mutable_data<BatchNormParamType<T>>(
                ctx.GetPlace())));

240
    PADDLE_ENFORCE_GPU_SUCCESS(
241
        platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
242
    PADDLE_ENFORCE_GPU_SUCCESS(
L
lvmengsi 已提交
243
        platform::dynload::cudnnDestroyTensorDescriptor(in_param_desc_));
244
#endif
L
lvmengsi 已提交
245 246 247
  }
};

L
lvmengsi 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
template <typename T, int BlockDim>
static __global__ void GradComputeDX(const T *dy,
                                     const BatchNormParamType<T> *scale,
                                     const BatchNormParamType<T> *mean,
                                     const T *x,
                                     const BatchNormParamType<T> *variance,
                                     const int C, const int sample_size,
                                     T *dx) {
  int beg_idx = blockIdx.x * sample_size + threadIdx.x;
  int end_idx = (blockIdx.x + 1) * sample_size;
  int ncid = blockIdx.x;
  int c = ncid % C;

  BatchNormParamType<T> mean_val = mean[ncid];
  BatchNormParamType<T> inv_var_val = variance[ncid];

  typedef cub::BlockReduce<BatchNormParamType<T>, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage dy_storage;
  __shared__ typename BlockReduce::TempStorage dy_x_sub_mean_storage;
  __shared__ BatchNormParamType<T> dy_sum_val;
  __shared__ BatchNormParamType<T> dy_x_sub_mean_sum_val;

  BatchNormParamType<T> dy_sum = static_cast<BatchNormParamType<T>>(0);
  BatchNormParamType<T> dy_x_sub_mean_sum =
      static_cast<BatchNormParamType<T>>(0);

  for (int i = beg_idx; i < end_idx; i += BlockDim) {
    BatchNormParamType<T> dy_i = static_cast<BatchNormParamType<T>>(dy[i]);
    dy_sum += dy_i;
    dy_x_sub_mean_sum +=
        dy_i * (static_cast<BatchNormParamType<T>>(x[i]) - mean_val);
  }
  dy_sum = BlockReduce(dy_storage).Reduce(dy_sum, cub::Sum());
  dy_x_sub_mean_sum =
      BlockReduce(dy_x_sub_mean_storage).Reduce(dy_x_sub_mean_sum, cub::Sum());

  if (threadIdx.x == 0) {
    dy_sum_val = dy_sum;
    dy_x_sub_mean_sum_val = dy_x_sub_mean_sum;
  }
  __syncthreads();

  for (int i = beg_idx; i < end_idx; i += BlockDim) {
    dx[i] =
        (static_cast<BatchNormParamType<T>>(dy[i]) -
         dy_sum_val / static_cast<BatchNormParamType<T>>(sample_size) -
         (static_cast<BatchNormParamType<T>>(x[i]) - mean_val) *
             dy_x_sub_mean_sum_val * inv_var_val * inv_var_val / sample_size) *
        scale[c] * inv_var_val;
  }
}

L
lvmengsi 已提交
300 301 302 303 304
template <typename T>
class InstanceNormGradKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
C
ceci3 已提交
305 306 307
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        platform::errors::PreconditionNotMet("It must use CUDAPlace."));
L
lvmengsi 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));

    const auto &x_dims = x->dims();

    int N, C, H, W, D;
    ExtractNCWHD(x_dims, DataLayout::kNCHW, &N, &C, &H, &W, &D);
    int NxC = N * C;

    Tensor x_tmp, d_y_tmp;
    x_tmp.ShareDataWith(*x).Resize({1, NxC, H, W, D});
    d_y_tmp.ShareDataWith(*d_y).Resize({1, NxC, H, W, D});

    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    d_x->mutable_data<T>(ctx.GetPlace());
    if (d_scale && d_bias) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      d_bias->mutable_data<T>(ctx.GetPlace());
    }
C
ceci3 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
    if (scale) {
      PADDLE_ENFORCE_EQ(
          scale->dims().size(), 1UL,
          platform::errors::InvalidArgument(
              "The `shape` in InstanceNormOp is invalid: "
              "the size of scale's dimensions must be equal to 1. But "
              "received: the size of scale's dimensions"
              "is [%d]",
              scale->dims().size()));
      PADDLE_ENFORCE_EQ(scale->dims()[0], C,
                        platform::errors::InvalidArgument(
                            "The `shape` in InstanceNormOp is invalid: "
                            "the first dimension of scale must be equal to "
                            "Channels([%d]). But received: "
                            "the first dimension of scale is [%d],"
                            "the dimensions of scale is [%s], ",
                            C, scale->dims()[0], scale->dims()));
    }
L
lvmengsi 已提交
350 351

    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
352
    phi::funcs::SetConstant<platform::CUDADeviceContext, T> set_constant;
L
lvmengsi 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367

    const int n = x->numel();
    const int block = 512;
    int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
    const int max_blocks = std::max(max_threads / block, 1);
    const int grid = std::min(NxC, max_blocks);
    const int grid1 = (C + block - 1) / block;

    Tensor scale_tmp =
        ctx.AllocateTmpTensor<T, platform::CUDADeviceContext>({NxC}, dev_ctx);
    scale_tmp.mutable_data<T>(ctx.GetPlace());
    Tensor d_scale_tmp =
        ctx.AllocateTmpTensor<T, platform::CUDADeviceContext>({NxC}, dev_ctx);
    Tensor d_bias_tmp =
        ctx.AllocateTmpTensor<T, platform::CUDADeviceContext>({NxC}, dev_ctx);
C
ceci3 已提交
368 369 370 371 372 373
    if (scale) {
      repeat_param<T><<<grid, block, 0, dev_ctx.stream()>>>(
          scale->data<T>(), scale_tmp.data<T>(), N, C);
    } else {
      set_constant(dev_ctx, &scale_tmp, static_cast<T>(1));
    }
L
lvmengsi 已提交
374 375 376 377 378 379 380 381

    std::vector<int> dims;
    std::vector<int> strides;
    dims = {1, NxC, H, W, D};
    strides = {NxC * H * W * D, H * W * D, W * D, D, 1};

    if ((H * W * D) == 1) {
      framework::TensorCopy(*d_y, ctx.GetPlace(), d_x);
382 383
      phi::funcs::SetConstant<platform::CUDADeviceContext,
                              BatchNormParamType<T>>
L
lvmengsi 已提交
384 385 386 387 388 389
          functor;
      functor(dev_ctx, d_scale, static_cast<BatchNormParamType<T>>(0));
      functor(dev_ctx, d_bias, static_cast<BatchNormParamType<T>>(0));
      return;
    }

390 391 392 393
#ifdef PADDLE_WITH_HIP
    miopenTensorDescriptor_t data_desc_;
    miopenTensorDescriptor_t in_param_desc_;

394
    PADDLE_ENFORCE_GPU_SUCCESS(
395
        platform::dynload::miopenCreateTensorDescriptor(&data_desc_));
396
    PADDLE_ENFORCE_GPU_SUCCESS(
397 398
        platform::dynload::miopenCreateTensorDescriptor(&in_param_desc_));
#else
L
lvmengsi 已提交
399 400 401
    cudnnTensorDescriptor_t data_desc_;
    cudnnTensorDescriptor_t in_param_desc_;

402
    PADDLE_ENFORCE_GPU_SUCCESS(
403
        platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
404
    PADDLE_ENFORCE_GPU_SUCCESS(
L
lvmengsi 已提交
405
        platform::dynload::cudnnCreateTensorDescriptor(&in_param_desc_));
406 407
#endif

L
lvmengsi 已提交
408 409 410 411 412 413 414
    if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
      LOG(ERROR) << "Provided epsilon is smaller than "
                 << "CUDNN_BN_MIN_EPSILON. Setting it to "
                 << "CUDNN_BN_MIN_EPSILON instead.";
    }
    epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);

415
#ifdef PADDLE_WITH_HIP
416
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::miopenSetTensorDescriptor(
417 418 419
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, const_cast<int *>(dims.data()),
        const_cast<int *>(strides.data())));
420
    PADDLE_ENFORCE_GPU_SUCCESS(
421 422 423
        platform::dynload::miopenDeriveBNTensorDescriptor(
            in_param_desc_, data_desc_, miopenBNSpatial));
#else
424
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
L
lvmengsi 已提交
425 426
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
427 428
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnDeriveBNTensorDescriptor(
        in_param_desc_, data_desc_, CUDNN_BATCHNORM_SPATIAL));
429
#endif
L
lvmengsi 已提交
430 431 432

    const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
    const auto *saved_var = ctx.Input<Tensor>("SavedVariance");
L
lvmengsi 已提交
433
    const auto *saved_mean_data =
L
lvmengsi 已提交
434
        saved_mean->template data<BatchNormParamType<T>>();
L
lvmengsi 已提交
435
    const auto *saved_var_data =
L
lvmengsi 已提交
436
        saved_var->template data<BatchNormParamType<T>>();
L
lvmengsi 已提交
437
    if (d_scale && d_bias) {
438
#ifdef PADDLE_WITH_HIP
439
      PADDLE_ENFORCE_GPU_SUCCESS(
440 441 442 443 444 445 446 447 448 449 450 451 452
          platform::dynload::miopenBatchNormalizationBackward(
              dev_ctx.cudnn_handle(), miopenBNSpatial, CudnnDataType<T>::kOne(),
              CudnnDataType<T>::kZero(), CudnnDataType<T>::kOne(),
              CudnnDataType<T>::kZero(), data_desc_, x_tmp.template data<T>(),
              data_desc_, d_y_tmp.template data<T>(), data_desc_,
              d_x->template mutable_data<T>(ctx.GetPlace()), in_param_desc_,
              scale_tmp.template data<BatchNormParamType<T>>(),
              d_scale_tmp.template mutable_data<BatchNormParamType<T>>(
                  ctx.GetPlace()),
              d_bias_tmp.template mutable_data<BatchNormParamType<T>>(
                  ctx.GetPlace()),
              epsilon, saved_mean_data, saved_var_data));
#else
453
      PADDLE_ENFORCE_GPU_SUCCESS(
454 455 456 457 458 459 460 461 462 463 464 465
          platform::dynload::cudnnBatchNormalizationBackward(
              dev_ctx.cudnn_handle(), CUDNN_BATCHNORM_SPATIAL,
              CudnnDataType<T>::kOne(), CudnnDataType<T>::kZero(),
              CudnnDataType<T>::kOne(), CudnnDataType<T>::kZero(), data_desc_,
              x_tmp.template data<T>(), data_desc_, d_y_tmp.template data<T>(),
              data_desc_, d_x->template mutable_data<T>(ctx.GetPlace()),
              in_param_desc_, scale_tmp.template data<BatchNormParamType<T>>(),
              d_scale_tmp.template mutable_data<BatchNormParamType<T>>(
                  ctx.GetPlace()),
              d_bias_tmp.template mutable_data<BatchNormParamType<T>>(
                  ctx.GetPlace()),
              epsilon, saved_mean_data, saved_var_data));
466
#endif
L
lvmengsi 已提交
467 468
    } else {
      if (d_x) {
C
ceci3 已提交
469
        GradComputeDX<T, block><<<NxC, block, 0, dev_ctx.stream()>>>(
C
ceci3 已提交
470
            d_y->data<T>(), scale_tmp.data<BatchNormParamType<T>>(),
L
lvmengsi 已提交
471 472 473 474
            saved_mean_data, x->data<T>(), saved_var_data, C, H * W * D,
            d_x->data<T>());
      }
    }
L
lvmengsi 已提交
475 476 477 478 479 480 481 482

    if (d_scale && d_bias) {
      add_param<T, block, false><<<grid1, block, 0, dev_ctx.stream()>>>(
          d_scale_tmp.data<T>(), d_scale->data<T>(), N, C);
      add_param<T, block, false><<<grid1, block, 0, dev_ctx.stream()>>>(
          d_bias_tmp.data<T>(), d_bias->data<T>(), N, C);
    }

483
#ifdef PADDLE_WITH_HIP
484
    PADDLE_ENFORCE_GPU_SUCCESS(
485
        platform::dynload::miopenDestroyTensorDescriptor(data_desc_));
486
    PADDLE_ENFORCE_GPU_SUCCESS(
487 488
        platform::dynload::miopenDestroyTensorDescriptor(in_param_desc_));
#else
489
    PADDLE_ENFORCE_GPU_SUCCESS(
490
        platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
491
    PADDLE_ENFORCE_GPU_SUCCESS(
L
lvmengsi 已提交
492
        platform::dynload::cudnnDestroyTensorDescriptor(in_param_desc_));
493
#endif
L
lvmengsi 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
  }
};

static __device__ __forceinline__ float real_sqrt(float x) {
  return 1. / sqrtf(x);
}
static __device__ __forceinline__ double real_sqrt(double x) {
  return 1. / sqrt(x);
}

template <typename T, int BlockDim>
__global__ void DoubleGradComputeDX(const T *x, const T *mean,
                                    const T *variance, const T *ddx,
                                    const T *dy, const T *scale,
                                    const T *ddscale, int C, int sample_size,
                                    const double epsilon, T *dx) {
  int beg_idx = blockIdx.x * sample_size + threadIdx.x;
  int end_idx = (blockIdx.x + 1) * sample_size;
  int ncid = blockIdx.x;
  int c = ncid % C;

  T mean_val = mean[ncid];
  T var_val = variance[ncid];

  typedef cub::BlockReduce<T, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage dy_storage;
  __shared__ typename BlockReduce::TempStorage ddx_storage;
  __shared__ typename BlockReduce::TempStorage dy_mul_ddx_storage;
  __shared__ typename BlockReduce::TempStorage dy_mul_x_sub_mean_storage;
  __shared__ typename BlockReduce::TempStorage ddx_mul_x_sub_mean_storage;
  __shared__ T dy_sum_val;
  __shared__ T ddx_sum_val;
  __shared__ T dy_mul_ddx_sum_val;
  __shared__ T dy_mul_x_sub_mean_sum_val;
  __shared__ T ddx_mul_x_sub_mean_sum_val;

  T dy_sum = 0;
  T ddx_sum = 0;
  T dy_mul_ddx_sum = 0;
  T dy_mul_x_sub_mean_sum = 0;
  T ddx_mul_x_sub_mean_sum = 0;
  for (int i = beg_idx; i < end_idx; i += BlockDim) {
    T ddx_i = ddx[i];
    T dy_i = dy[i];
    T tmp = x[i] - mean_val;

    dy_sum += dy_i;
    ddx_sum += ddx_i;
    dy_mul_ddx_sum += (ddx_i * dy_i);

    dy_mul_x_sub_mean_sum += (dy_i * tmp);
    ddx_mul_x_sub_mean_sum += (ddx_i * tmp);
  }

  dy_sum = BlockReduce(dy_storage).Reduce(dy_sum, cub::Sum());
  ddx_sum = BlockReduce(ddx_storage).Reduce(ddx_sum, cub::Sum());
  dy_mul_ddx_sum =
      BlockReduce(dy_mul_ddx_storage).Reduce(dy_mul_ddx_sum, cub::Sum());
  dy_mul_x_sub_mean_sum = BlockReduce(dy_mul_x_sub_mean_storage)
                              .Reduce(dy_mul_x_sub_mean_sum, cub::Sum());
  ddx_mul_x_sub_mean_sum = BlockReduce(ddx_mul_x_sub_mean_storage)
                               .Reduce(ddx_mul_x_sub_mean_sum, cub::Sum());

  if (threadIdx.x == 0) {
    dy_sum_val = dy_sum;
    ddx_sum_val = ddx_sum;
    dy_mul_ddx_sum_val = dy_mul_ddx_sum;
    dy_mul_x_sub_mean_sum_val = dy_mul_x_sub_mean_sum;
    ddx_mul_x_sub_mean_sum_val = ddx_mul_x_sub_mean_sum;
  }
  __syncthreads();

  if (ddx != nullptr) {
    for (int i = beg_idx; i < end_idx; i += BlockDim) {
      dx[i] +=
          ((x[i] - mean_val) * var_val * var_val * var_val / sample_size *
               (ddx_sum_val * dy_sum_val / sample_size - dy_mul_ddx_sum_val +
                3. * dy_mul_x_sub_mean_sum_val * var_val *
                    ddx_mul_x_sub_mean_sum_val * var_val / sample_size) +
           ddx_mul_x_sub_mean_sum_val * var_val / sample_size * var_val *
               var_val * (dy_sum_val / sample_size - dy[i]) +
           dy_mul_x_sub_mean_sum_val * var_val / sample_size * var_val *
               var_val * (ddx_sum_val / sample_size - ddx[i])) *
          scale[c];
    }
  }
  __syncthreads();
  if (ddscale != nullptr) {
    for (int i = beg_idx; i < end_idx; i += BlockDim) {
      dx[i] += (dy[i] * var_val - dy_sum_val / sample_size * var_val -
                (x[i] - mean_val) * var_val * dy_mul_x_sub_mean_sum_val *
                    var_val / sample_size) *
               ddscale[c];
    }
  }
}

template <typename T, int BlockDim>
__global__ void DoubleGradComputeDDY(const T *x, const T *mean,
                                     const T *variance, const T *ddscale,
                                     const T *ddbias, const T *ddx,
                                     const T *scale, int C, int sample_size,
                                     const double epsilon, T *ddy) {
  int beg_idx = blockIdx.x * sample_size + threadIdx.x;
  int end_idx = (blockIdx.x + 1) * sample_size;
  int ncid = blockIdx.x;
  int c = ncid % C;

  T mean_val = mean[ncid];
  T var_val = variance[ncid];

  typedef cub::BlockReduce<T, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage ddx_storage;
  __shared__ typename BlockReduce::TempStorage ddx_mul_x_sub_mean_storage;
  __shared__ T ddx_sum_val;
  __shared__ T ddx_mul_x_sub_mean_sum_val;

  T ddx_sum = 0;
  T ddx_mul_x_sub_mean_sum = 0;
  for (int i = beg_idx; i < end_idx; i += BlockDim) {
    T ddx_i = ddx[i];
    ddx_sum += ddx_i;
    ddx_mul_x_sub_mean_sum += (ddx_i * (x[i] - mean_val));
  }
  ddx_sum = BlockReduce(ddx_storage).Reduce(ddx_sum, cub::Sum());
  ddx_mul_x_sub_mean_sum = BlockReduce(ddx_mul_x_sub_mean_storage)
                               .Reduce(ddx_mul_x_sub_mean_sum, cub::Sum());

  if (threadIdx.x == 0) {
    ddx_sum_val = ddx_sum;
    ddx_mul_x_sub_mean_sum_val = ddx_mul_x_sub_mean_sum;
  }
  __syncthreads();

  if (ddx != nullptr) {
    for (int i = beg_idx; i < end_idx; i += BlockDim) {
      ddy[i] += scale[c] * var_val *
                (ddx[i] - ddx_sum_val / sample_size -
                 (x[i] - mean_val) * var_val * ddx_mul_x_sub_mean_sum_val *
                     var_val / sample_size);
    }
  }
  __syncthreads();
  if (ddscale != nullptr) {
    for (int i = beg_idx; i < end_idx; i += BlockDim) {
      ddy[i] += (x[i] - mean_val) * var_val * ddscale[c];
    }
  }
  __syncthreads();
  if (ddbias != nullptr) {
    for (int i = beg_idx; i < end_idx; i += BlockDim) {
      ddy[i] += ddbias[c];
    }
  }
}

template <typename T, int BlockDim>
__global__ void DoubleGradComputeDScale(const T *x, const T *mean,
                                        const T *variance, const T *ddx,
                                        const T *dy, int C, int sample_size,
                                        const double epsilon, T *dscale) {
  int beg_idx = blockIdx.x * sample_size + threadIdx.x;
  int end_idx = (blockIdx.x + 1) * sample_size;
  int ncid = blockIdx.x;
  int c = ncid % C;

  T mean_val = mean[ncid];
  T var_val = variance[ncid];

  typedef cub::BlockReduce<T, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage dy_storage;
  __shared__ typename BlockReduce::TempStorage dy_mul_x_sub_mean_storage;
  __shared__ typename BlockReduce::TempStorage dscale_tmp_storage;
  __shared__ T dy_sum_val;
  __shared__ T dy_mul_x_sub_mean_sum_val;

  T dy_sum = 0;
  T dy_mul_x_sub_mean_sum = 0;
  for (int i = beg_idx; i < end_idx; i += BlockDim) {
    T dy_i = dy[i];
    dy_sum += dy_i;
    dy_mul_x_sub_mean_sum += (dy_i * (x[i] - mean_val));
  }
  dy_sum = BlockReduce(dy_storage).Reduce(dy_sum, cub::Sum());
  dy_mul_x_sub_mean_sum = BlockReduce(dy_mul_x_sub_mean_storage)
                              .Reduce(dy_mul_x_sub_mean_sum, cub::Sum());

  if (threadIdx.x == 0) {
    dy_sum_val = dy_sum;
    dy_mul_x_sub_mean_sum_val = dy_mul_x_sub_mean_sum;
  }
  __syncthreads();

  if (ddx != nullptr) {
    T dscale_tmp = 0;
    for (int i = beg_idx; i < end_idx; i += BlockDim) {
      dscale_tmp +=
          ddx[i] * var_val * (dy[i] - dy_sum_val / sample_size -
                              dy_mul_x_sub_mean_sum_val * (x[i] - mean_val) *
                                  var_val * var_val / sample_size);
    }
    dscale_tmp = BlockReduce(dscale_tmp_storage).Reduce(dscale_tmp, cub::Sum());

    if (threadIdx.x == 0) {
      dscale[ncid] += dscale_tmp;
    }
    __syncthreads();
  }
}

template <typename T>
class InstanceNormDoubleGradKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *X = ctx.Input<Tensor>("X");
    const auto *Scale = ctx.Input<Tensor>("Scale");
    const auto *dY = ctx.Input<Tensor>("DY");
    const auto *Saved_mean = ctx.Input<Tensor>("SavedMean");
    const auto *Saved_variance = ctx.Input<Tensor>("SavedVariance");
    const auto *running_mean = ctx.Input<Tensor>("Mean");
    const auto *running_var = ctx.Input<Tensor>("Variance");
    const auto *ddX = ctx.Input<Tensor>("DDX");
    const auto *ddScale = ctx.Input<Tensor>("DDScale");
    const auto *ddBias = ctx.Input<Tensor>("DDBias");
    const double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));

    auto *dX = ctx.Output<Tensor>("DX");
    auto *dScale = ctx.Output<Tensor>("DScale");
    auto *ddY = ctx.Output<Tensor>("DDY");

    const T *x_data = X->data<T>();
    const T *dy_data = dY->data<T>();
    const T *ddx_data = (ddX == nullptr ? nullptr : ddX->data<T>());

    const T *ddscale_data = (ddScale == nullptr ? nullptr : ddScale->data<T>());
    const T *ddbias_data = (ddScale == nullptr ? nullptr : ddBias->data<T>());

    const T *mean_data = Saved_mean->data<T>();
    const T *variance_data = Saved_variance->data<T>();

C
ceci3 已提交
735
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
736
    phi::funcs::SetConstant<platform::CUDADeviceContext, T> set_zero;
C
ceci3 已提交
737

L
lvmengsi 已提交
738 739 740 741 742 743 744
    auto &x_dims = X->dims();
    int N, C, H, W, D;
    ExtractNCWHD(x_dims, DataLayout::kNCHW, &N, &C, &H, &W, &D);
    int NxC = N * C;
    const int n = X->numel();
    int sample_size = n / N / C;

C
ceci3 已提交
745 746 747 748 749 750 751
    Tensor scale_tmp;
    if (!Scale) {
      scale_tmp.mutable_data<T>({C}, ctx.GetPlace());
      set_zero(dev_ctx, &scale_tmp, static_cast<T>(1));
    }
    const T *scale_data = Scale ? Scale->data<T>() : scale_tmp.data<T>();

L
lvmengsi 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
    const int block = 512;
    int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
    const int max_blocks = std::max(max_threads / block, 1);
    const int grid = NxC;
    const int grid1 = (C + block - 1) / block;

    if (dX) {
      T *dx_data = dX->mutable_data<T>(ctx.GetPlace());
      set_zero(dev_ctx, dX, static_cast<T>(0));
      DoubleGradComputeDX<T, block><<<grid, block, 0, dev_ctx.stream()>>>(
          x_data, mean_data, variance_data, ddx_data, dy_data, scale_data,
          ddscale_data, C, sample_size, epsilon, dx_data);
    }
    if (dScale) {
      Tensor dscale_tmp =
          ctx.AllocateTmpTensor<T, platform::CUDADeviceContext>({NxC}, dev_ctx);
      set_zero(dev_ctx, &dscale_tmp, static_cast<T>(0));
      T *dscale_tmp_data = dscale_tmp.mutable_data<T>(ctx.GetPlace());

      T *dscale_data = dScale->mutable_data<T>(ctx.GetPlace());
      set_zero(dev_ctx, dScale, static_cast<T>(0));
      DoubleGradComputeDScale<T, block><<<grid, block, 0, dev_ctx.stream()>>>(
          x_data, mean_data, variance_data, ddx_data, dy_data, C, sample_size,
          epsilon, dscale_tmp_data);
      add_param<T, block, false><<<grid1, block, 0, dev_ctx.stream()>>>(
          dscale_tmp.data<T>(), dScale->data<T>(), N, C);
    }
    if (ddY) {
      T *ddy_data = ddY->mutable_data<T>(ctx.GetPlace());
      set_zero(dev_ctx, ddY, static_cast<T>(0));
      DoubleGradComputeDDY<T, block><<<grid, block, 0, dev_ctx.stream()>>>(
          x_data, mean_data, variance_data, ddscale_data, ddbias_data, ddx_data,
          scale_data, C, sample_size, epsilon, ddy_data);
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
794 795 796 797 798 799 800 801 802 803 804
#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
REGISTER_OP_CUDA_KERNEL(
    instance_norm, ops::InstanceNormKernel<plat::CUDADeviceContext, float>);
REGISTER_OP_CUDA_KERNEL(
    instance_norm_grad,
    ops::InstanceNormGradKernel<plat::CUDADeviceContext, float>);
REGISTER_OP_CUDA_KERNEL(instance_norm_grad_grad,
                        ops::InstanceNormDoubleGradKernel<
                            paddle::platform::CUDADeviceContext, float>);
#else
L
lvmengsi 已提交
805 806 807 808 809 810 811 812 813 814 815 816 817
REGISTER_OP_CUDA_KERNEL(
    instance_norm, ops::InstanceNormKernel<plat::CUDADeviceContext, float>,
    ops::InstanceNormKernel<plat::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
    instance_norm_grad,
    ops::InstanceNormGradKernel<plat::CUDADeviceContext, float>,
    ops::InstanceNormGradKernel<plat::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
    instance_norm_grad_grad,
    ops::InstanceNormDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                      float>,
    ops::InstanceNormDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                      double>);
818
#endif