slice_op.cc 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/plugin/slice_op_plugin.h"
17
#include "paddle/fluid/inference/tensorrt/plugin/special_slice_plugin.h"
18 19 20 21 22 23 24 25 26

namespace paddle {
namespace inference {
namespace tensorrt {

class SliceOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
27 28
    // This OP is implemented by trt dynamic shpae plugin.
    // Dynamic shape plugin requires TRT version greater than 6.0.
29 30 31 32
    VLOG(4) << "convert slice op to tensorrt layer";
    framework::OpDesc op_desc(op, nullptr);
    // Declare inputs
    auto* input = engine_->GetITensor(op_desc.Input("Input")[0]);
33
    auto output_name = op_desc.Output("Out")[0];
34

35
    float out_scale = 1;
36
    if (op_desc.HasAttr("out_threshold")) {
37
      out_scale = BOOST_GET_CONST(float, op_desc.GetAttr("out_threshold"));
38 39 40
      engine_->SetTensorDynamicRange(input, out_scale);
    }

41
    std::vector<int> axes =
42
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("axes"));
43
    std::vector<int> starts =
44
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("starts"));
45
    std::vector<int> ends =
46
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("ends"));
47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    auto input_dims = input->getDimensions();
    if (!engine_->with_dynamic_shape()) {
      // notice that input shape is [CHW] without batch axis when input has
      // static shape
      for (size_t i = input_dims.nbDims; i > 0; i--) {
        input_dims.d[i] = input_dims.d[i - 1];
      }
      input_dims.d[0] = 1;  // fake batchsize, not useful here
      for (size_t i = 0; i < axes.size(); i++) {
        if (starts[i] < 0) {
          starts[i] = std::max(starts[i] + input_dims.d[axes[i]], 0);
        }
        if (ends[i] < 0) {
          ends[i] = std::max(ends[i] + input_dims.d[axes[i]], 0);
        }
        ends[i] = std::min(ends[i], input_dims.d[axes[i]]);
        PADDLE_ENFORCE_GT(
            ends[i], starts[i],
            platform::errors::InvalidArgument(
                "Attr(ends) should be greater than attr(starts) in "
                "slice op. But received ends = %d, starts = %d.",
                ends[i], starts[i]));
      }
    }

73 74
    nvinfer1::ILayer* layer = nullptr;
    if (engine_->with_dynamic_shape()) {
75 76
      if (engine_->use_oss() && engine_->with_ernie()) {
        std::vector<nvinfer1::ITensor*> plugin_inputs;
77 78 79 80 81 82 83 84 85 86 87 88 89 90
        if (engine_->with_interleaved()) {
          auto* shuffler_slice = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input);
          nvinfer1::Permutation transpose_embed{2, 1, 0, 3};
          shuffler_slice->setSecondTranspose(transpose_embed);
          engine_->SetTensorDynamicRange(shuffler_slice->getOutput(0),
                                         out_scale);
          shuffler_slice->setName(
              ("SpecialSlice_interleaved: Shuffle: (Output: " + output_name +
               ")")
                  .c_str());
          plugin_inputs.emplace_back(shuffler_slice->getOutput(0));
        } else {
          plugin_inputs.emplace_back(input);
        }
91 92 93 94 95 96 97 98 99
        std::string pos_name;
        if (engine_->Has("ernie_pos_name")) {
          pos_name = engine_->Get<std::string>("ernie_pos_name");
        } else {
          // hard code for compatibility
          pos_name = engine_->network()->getInput(2)->getName();
        }
        plugin_inputs.emplace_back(
            engine_->GetITensor(pos_name));  // cu_seqlens, eval_placeholder_2
100 101 102 103

        // bool ban_fp16 = engine_->disable_trt_plugin_fp16();
        plugin::SpecialSlicePluginDynamic* plugin =
            new plugin::SpecialSlicePluginDynamic();
104 105
        layer = engine_->AddDynamicPlugin(plugin_inputs.data(),
                                          plugin_inputs.size(), plugin);
106
      } else {
107 108
        bool with_fp16 =
            engine_->WithFp16() && !engine_->disable_trt_plugin_fp16();
109
        plugin::SlicePluginDynamic* plugin =
110
            new plugin::SlicePluginDynamic(starts, ends, axes, with_fp16);
111
        layer = engine_->AddDynamicPlugin(&input, 1, plugin);
112
      }
113
    } else {
114 115
      bool with_fp16 =
          engine_->WithFp16() && !engine_->disable_trt_plugin_fp16();
116
      plugin::SlicePlugin* plugin =
117
          new plugin::SlicePlugin(starts, ends, axes, with_fp16);
118
      layer = engine_->AddPlugin(&input, 1, plugin);
119
    }
120
    RreplenishLayerAndOutput(layer, "slice", {output_name}, test_mode);
121 122 123 124 125 126 127 128
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(slice, SliceOpConverter);