sentiment_net.py 5.0 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from os.path import join as join_path

from paddle.trainer_config_helpers import *


def sentiment_data(data_dir=None,
                   is_test=False,
                   is_predict=False,
                   train_list="train.list",
                   test_list="test.list",
                   dict_file="dict.txt"):
    """
    Predefined data provider for sentiment analysis.
    is_test: whether this config is used for test.
    is_predict: whether this config is used for prediction.
    train_list: text file name, containing a list of training set.
    test_list: text file name, containing a list of testing set.
    dict_file: text file name, containing dictionary.
    """
    dict_dim = len(open(join_path(data_dir, "dict.txt")).readlines())
    class_dim = len(open(join_path(data_dir, 'labels.list')).readlines())
    if is_predict:
        return dict_dim, class_dim

    if data_dir is not None:
        train_list = join_path(data_dir, train_list)
        test_list = join_path(data_dir, test_list)
        dict_file = join_path(data_dir, dict_file)

    train_list = train_list if not is_test else None
    word_dict = dict()
    with open(dict_file, 'r') as f:
        for i, line in enumerate(open(dict_file, 'r')):
            word_dict[line.split('\t')[0]] = i

50 51 52 53 54 55
    define_py_data_sources2(
        train_list,
        test_list,
        module="dataprovider",
        obj="process",
        args={'dictionary': word_dict})
Z
zhangjinchao01 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68

    return dict_dim, class_dim


def bidirectional_lstm_net(input_dim,
                           class_dim=2,
                           emb_dim=128,
                           lstm_dim=128,
                           is_predict=False):
    data = data_layer("word", input_dim)
    emb = embedding_layer(input=data, size=emb_dim)
    bi_lstm = bidirectional_lstm(input=emb, size=lstm_dim)
    dropout = dropout_layer(input=bi_lstm, dropout_rate=0.5)
69
    output = fc_layer(input=dropout, size=class_dim, act=SoftmaxActivation())
Z
zhangjinchao01 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

    if not is_predict:
        lbl = data_layer("label", 1)
        outputs(classification_cost(input=output, label=lbl))
    else:
        outputs(output)


def stacked_lstm_net(input_dim,
                     class_dim=2,
                     emb_dim=128,
                     hid_dim=512,
                     stacked_num=3,
                     is_predict=False):
    """
    A Wrapper for sentiment classification task.
    This network uses bi-directional recurrent network,
    consisting three LSTM layers. This configure is referred to
    the paper as following url, but use fewer layrs.
        http://www.aclweb.org/anthology/P15-1109

    input_dim: here is word dictionary dimension.
    class_dim: number of categories.
    emb_dim: dimension of word embedding.
    hid_dim: dimension of hidden layer.
    stacked_num: number of stacked lstm-hidden layer.
    is_predict: is predicting or not.
                Some layers is not needed in network when predicting.
    """
    hid_lr = 1e-3
    assert stacked_num % 2 == 1

    layer_attr = ExtraLayerAttribute(drop_rate=0.5)
    fc_para_attr = ParameterAttribute(learning_rate=hid_lr)
    lstm_para_attr = ParameterAttribute(initial_std=0., learning_rate=1.)
    para_attr = [fc_para_attr, lstm_para_attr]
    bias_attr = ParameterAttribute(initial_std=0., l2_rate=0.)
    relu = ReluActivation()
    linear = LinearActivation()

    data = data_layer("word", input_dim)
    emb = embedding_layer(input=data, size=emb_dim)

113 114 115
    fc1 = fc_layer(input=emb, size=hid_dim, act=linear, bias_attr=bias_attr)
    lstm1 = lstmemory(
        input=fc1, act=relu, bias_attr=bias_attr, layer_attr=layer_attr)
Z
zhangjinchao01 已提交
116 117 118

    inputs = [fc1, lstm1]
    for i in range(2, stacked_num + 1):
119 120 121 122 123 124 125 126 127 128 129 130
        fc = fc_layer(
            input=inputs,
            size=hid_dim,
            act=linear,
            param_attr=para_attr,
            bias_attr=bias_attr)
        lstm = lstmemory(
            input=fc,
            reverse=(i % 2) == 0,
            act=relu,
            bias_attr=bias_attr,
            layer_attr=layer_attr)
Z
zhangjinchao01 已提交
131 132 133 134
        inputs = [fc, lstm]

    fc_last = pooling_layer(input=inputs[0], pooling_type=MaxPooling())
    lstm_last = pooling_layer(input=inputs[1], pooling_type=MaxPooling())
135 136 137 138 139 140
    output = fc_layer(
        input=[fc_last, lstm_last],
        size=class_dim,
        act=SoftmaxActivation(),
        bias_attr=bias_attr,
        param_attr=para_attr)
Z
zhangjinchao01 已提交
141 142 143 144

    if is_predict:
        outputs(output)
    else:
145
        outputs(classification_cost(input=output, label=data_layer('label', 1)))