layer_norm_kernel.cu 10.4 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/phi/kernels/layer_norm_kernel.h"

H
hong 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
#include "paddle/fluid/operators/layer_norm_kernel.cu.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/layer_norm_util.h"

namespace phi {

template <typename T>
void LayerNormDirectCUDAFunctor<T>::operator()(gpuStream_t stream,
                                               const T *input,
                                               std::vector<int> input_shape,
                                               const T *bias,
                                               const T *scale,
                                               T *output,
                                               T *mean,
                                               T *variance,
                                               int begin_norm_axis,
                                               float eps) {
  const auto x_dims = phi::make_ddim(input_shape);
  auto matrix_dim = phi::flatten_to_2d(x_dims, begin_norm_axis);
  int64_t batch_size = static_cast<int64_t>(matrix_dim[0]);
  int64_t feature_size = static_cast<int64_t>(matrix_dim[1]);
  switch (paddle::operators::GetDesiredBlockDim(feature_size)) {
40 41 42 43
    FIXED_BLOCK_DIM_CASE(
        paddle::operators::LayerNormForward<T, T, kBlockDim>
        <<<batch_size, kBlockDim, 0, stream>>>(
            input, scale, bias, output, mean, variance, eps, feature_size));
H
hong 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56
    default:
      PADDLE_THROW(phi::errors::InvalidArgument(
          "Product from begin_norm_axis to end in layer_norm must be larger "
          "than 1"));
      break;
  }
}

template class LayerNormDirectCUDAFunctor<float>;

template <typename T, typename Context>
void LayerNormKernel(const Context &dev_ctx,
                     const DenseTensor &x,
57 58
                     const paddle::optional<DenseTensor> &scale_opt,
                     const paddle::optional<DenseTensor> &bias_opt,
H
hong 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
                     float epsilon,
                     int begin_norm_axis,
                     bool is_test,
                     DenseTensor *y,
                     DenseTensor *mean,
                     DenseTensor *var) {
  using U = paddle::operators::LayerNormParamType<T>;
  auto *scale = scale_opt.get_ptr();
  auto *bias = bias_opt.get_ptr();

  const auto x_dims = x.dims();
  auto *x_data = x.data<T>();
  auto *y_data = dev_ctx.template Alloc<T>(y);
  auto *mean_data = dev_ctx.template Alloc<U>(mean);
  auto *var_data = dev_ctx.template Alloc<U>(var);

  auto *void_scale_data = (scale == nullptr ? nullptr : scale->data());
  auto *void_bias_data = (bias == nullptr ? nullptr : bias->data());

  auto x_dtype = x.dtype();
  phi::DataType scale_bias_dtype;
  if (void_scale_data != nullptr) {
    scale_bias_dtype = scale->dtype();
    if (void_bias_data != nullptr) {
      PADDLE_ENFORCE_EQ(
          scale->dtype(),
          bias->dtype(),
86
          phi::errors::InvalidArgument("This Scale and Bias of layer_norm op "
H
hong 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
                                       "should have the same data type."));
    }
  } else {
    scale_bias_dtype = (void_bias_data != nullptr ? bias->dtype() : x_dtype);
  }

  bool is_scale_bias_same_dtype_with_x = x_dtype == scale_bias_dtype;
  if (!is_scale_bias_same_dtype_with_x) {
    PADDLE_ENFORCE_EQ(scale_bias_dtype,
                      paddle::experimental::CppTypeToDataType<U>::Type(),
                      phi::errors::InvalidArgument(
                          "Unsupported data type of Scale and Bias"));
  }

  auto matrix_dim = phi::flatten_to_2d(x_dims, begin_norm_axis);
  int64_t batch_size = static_cast<int64_t>(matrix_dim[0]);
  int64_t feature_size = static_cast<int64_t>(matrix_dim[1]);

  auto stream = dev_ctx.stream();

#define PADDLE_LAUNCH_LAYERNORM_FWD(ScaleBiasT, IsScaleBiasSameDTypeWithX) \
  do {                                                                     \
    switch (paddle::operators::GetDesiredBlockDim(feature_size)) {         \
110 111 112 113 114 115 116 117 118 119 120 121
      FIXED_BLOCK_DIM_CASE(                                                \
          paddle::operators::                                              \
              LayerNormForward<T, U, kBlockDim, IsScaleBiasSameDTypeWithX> \
          <<<batch_size, kBlockDim, 0, stream>>>(                          \
              x_data,                                                      \
              static_cast<const ScaleBiasT *>(void_scale_data),            \
              static_cast<const ScaleBiasT *>(void_bias_data),             \
              y_data,                                                      \
              mean_data,                                                   \
              var_data,                                                    \
              epsilon,                                                     \
              feature_size));                                              \
H
hong 已提交
122 123 124 125 126 127 128
      default:                                                             \
        PADDLE_THROW(phi::errors::InvalidArgument(                         \
            "Product from begin_norm_axis to end must be larger than 1")); \
        break;                                                             \
    }                                                                      \
  } while (0)

129 130 131 132 133 134 135 136 137 138 139
#define PADDLE_LAUNCH_FAST_LAYERNORM_FWD_BASE(ScaleT, feature_size)          \
  case (feature_size): {                                                     \
    constexpr int WARPS_N = feature_size < 1024 ? 1 : (feature_size / 1024); \
    constexpr int WARPS_M = 4 / WARPS_N;                                     \
    const int THREADS_PER_WARP = 32;                                         \
    const int BYTES_PER_LDG = 16;                                            \
    const int VecSize = BYTES_PER_LDG / sizeof(T);                           \
    const int THREADS_PER_CTA = WARPS_N * THREADS_PER_WARP * WARPS_M;        \
    const int ROWS_PER_CTA = WARPS_M;                                        \
    const int grid = static_cast<int>(                                       \
        std::ceil(batch_size / static_cast<float>(ROWS_PER_CTA)));           \
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    paddle::operators::fast_ln_fwd_kernel<T,                                 \
                                          U,                                 \
                                          ScaleT,                            \
                                          VecSize,                           \
                                          WARPS_M,                           \
                                          WARPS_N,                           \
                                          BYTES_PER_LDG>                     \
        <<<grid, THREADS_PER_CTA, 0, stream>>>(                              \
            batch_size,                                                      \
            feature_size,                                                    \
            epsilon,                                                         \
            x_data,                                                          \
            static_cast<const ScaleT *>(void_scale_data),                    \
            static_cast<const ScaleT *>(void_bias_data),                     \
            mean_data,                                                       \
            var_data,                                                        \
            y_data);                                                         \
157 158 159 160 161 162 163 164 165 166 167
  } break

#define PADDLE_LAUNCH_FAST_LAYERNORM_FWD(ScaleT)       \
  PADDLE_LAUNCH_FAST_LAYERNORM_FWD_BASE(ScaleT, 768);  \
  PADDLE_LAUNCH_FAST_LAYERNORM_FWD_BASE(ScaleT, 1024); \
  PADDLE_LAUNCH_FAST_LAYERNORM_FWD_BASE(ScaleT, 1280); \
  PADDLE_LAUNCH_FAST_LAYERNORM_FWD_BASE(ScaleT, 1536); \
  PADDLE_LAUNCH_FAST_LAYERNORM_FWD_BASE(ScaleT, 1792); \
  PADDLE_LAUNCH_FAST_LAYERNORM_FWD_BASE(ScaleT, 2048); \
  PADDLE_LAUNCH_FAST_LAYERNORM_FWD_BASE(ScaleT, 4096)

H
hong 已提交
168
#ifdef PADDLE_WITH_CUDA
169 170 171 172 173 174
  bool can_call_fast_kernel = false;
  if ((feature_size >= 768 && feature_size <= 2048 && feature_size % 256 == 0 ||
       feature_size == 4096) &&
      scale != nullptr && bias != nullptr) {
    // can_call_fast_kernel = true;
    can_call_fast_kernel = false;
H
hong 已提交
175
  }
176 177

  if (can_call_fast_kernel) {
H
hong 已提交
178
    if (is_scale_bias_same_dtype_with_x) {
179 180 181 182 183 184 185 186 187
      switch (feature_size) {
        PADDLE_LAUNCH_FAST_LAYERNORM_FWD(T);
        default:
          PADDLE_THROW(phi::errors::InvalidArgument(
              "Only when feature_size is from 256 to 4096 and is diviaible by "
              "256 is supported "
              "now"));
          break;
      }
H
hong 已提交
188
    } else {
189 190 191 192 193 194 195 196 197
      switch (feature_size) {
        PADDLE_LAUNCH_FAST_LAYERNORM_FWD(U);
        default:
          PADDLE_THROW(phi::errors::InvalidArgument(
              "Only when feature_size is from 256 to 4096 and is diviaible by "
              "is supported "
              "now"));
          break;
      }
H
hong 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210
    }
  } else {
#endif
    if (is_scale_bias_same_dtype_with_x) {
      PADDLE_LAUNCH_LAYERNORM_FWD(T, true);
    } else {
      PADDLE_LAUNCH_LAYERNORM_FWD(U, false);
    }
#ifdef PADDLE_WITH_CUDA
  }
#endif

#undef PADDLE_LAUNCH_LAYERNORM_FWD
211
#undef PADDLE_LAUNCH_FAST_LAYERNORM_FWD
H
hong 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
}

}  // namespace phi

#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
PD_REGISTER_KERNEL(layer_norm,
                   GPU,
                   ALL_LAYOUT,
                   phi::LayerNormKernel,
                   float,
                   phi::dtype::float16) {}
#elif CUDNN_VERSION_MIN(8, 1, 0)
PD_REGISTER_KERNEL(layer_norm,
                   GPU,
                   ALL_LAYOUT,
                   phi::LayerNormKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
#else
PD_REGISTER_KERNEL(layer_norm,
                   GPU,
                   ALL_LAYOUT,
                   phi::LayerNormKernel,
                   float,
                   double,
                   phi::dtype::float16) {}
#endif