variable_wrapper.h 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17
#include <map>
18
#include <memory>
19
#include <string>
20 21
#include <utility>

22
#include "paddle/fluid/framework/op_kernel_type.h"
23
#include "paddle/fluid/framework/variable.h"
24
#include "paddle/fluid/imperative/hooks.h"
25
#include "paddle/fluid/imperative/op_base.h"
26 27 28 29

namespace paddle {
namespace imperative {

30 31
class VariableWrapperHook;
class InplaceVariableWrapperHook;
32 33 34
class VarBase;
class GradOpNode;

35 36
class VariableWrapper {
 public:
37 38
  friend class VarBase;

39 40
  explicit VariableWrapper(const std::string& name) : name_(name) {}

41 42
  ~VariableWrapper() { VLOG(10) << "Destruct VariableWrapper: " << Name(); }

43 44 45 46 47 48 49
  const framework::Variable& Var() const { return var_; }

  framework::Variable* MutableVar() { return &var_; }

  // This is used for python api
  void SetOverridedStopGradient(bool stop_gradient) {
    overrided_stop_gradient_ = static_cast<int>(stop_gradient);
50 51 52 53

    if (auto grad_var = grad_var_.lock()) {
      grad_var->SetOverridedStopGradient(stop_gradient);
    }
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
  }

  // This is used for python api
  bool OverridedStopGradient() const { return overrided_stop_gradient_ != 0; }

  // This is used inside C++
  int InnerOverridedStopGradient() const { return overrided_stop_gradient_; }

  // This is used inside C++
  void InnerSetOverridedStopGradient(bool stop_gradient) {
    if (overrided_stop_gradient_ == -1) {
      overrided_stop_gradient_ = static_cast<int>(stop_gradient);
    } else {
      VLOG(6) << "Ignore Stop gradient conversion for Var: " << Name()
              << "Set value is: " << overrided_stop_gradient_;
    }
70 71 72 73

    if (auto grad_var = grad_var_.lock()) {
      grad_var->InnerSetOverridedStopGradient(stop_gradient);
    }
74 75
  }

76 77 78 79 80 81 82 83 84 85 86
  bool IsLeaf() const {
    if (OverridedStopGradient()) {
      return true;
    }
    if (HasGradVar() && !GetGradVar()->HasGradNode()) {
      return true;
    }
    return false;
  }

  bool IsLeafGrad() const {
87
    if (!HasGradNode() && !OverridedStopGradient()) {
88 89 90 91 92
      return true;
    }
    return false;
  }

93 94 95 96
  void SetPersistable(bool persistable) { persistable_ = persistable; }

  bool Persistable() const { return persistable_; }

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
  bool IsEmpty() const {
    bool is_empty = true;
    if (var_.IsInitialized()) {
      const framework::Tensor* tensor = nullptr;
      if (var_.IsType<framework::LoDTensor>()) {
        tensor = &(var_.Get<framework::LoDTensor>());
      } else if (var_.IsType<framework::SelectedRows>()) {
        tensor = &(var_.Get<framework::SelectedRows>().value());
      } else {
        PADDLE_THROW(platform::errors::PermissionDenied(
            "Only support LoDTensor and SelectedRows for gradient var"));
      }
      if (tensor && tensor->IsInitialized()) {
        is_empty = false;
      }
    }
    return is_empty || is_empty_;
  }

  // TODO(zhouwei): fix Tensor.clear_gradient() bug, function SetIsEmpty() isn't
  // need
  void SetIsEmpty(bool is_empty) { is_empty_ = is_empty; }

120 121 122 123 124 125 126 127
  const std::string& Name() const { return name_; }

  void SetName(const std::string& name) { name_ = name; }

  void SetType(framework::proto::VarType::Type type) { type_ = type; }

  framework::proto::VarType::Type Type() const { return type_; }

128 129 130 131 132 133 134 135 136 137 138 139
  std::shared_ptr<VariableWrapper> GetGradVar() const {
    return grad_var_.lock();
  }

  const std::weak_ptr<VariableWrapper>& GetWeakGradVar() const {
    return grad_var_;
  }

  std::shared_ptr<GradOpNode> GetGradNode() const { return grad_node_.lock(); }

  bool HasGradNode() const { return !grad_node_.expired(); }

140 141
  bool HasGradVar() const { return !grad_var_.expired(); }

142 143 144 145
  void SetDataType(framework::proto::VarType::Type data_type) {
    data_type_ = data_type;
  }

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
  framework::proto::VarType::Type DataType() const {
    const framework::Tensor* tensor = nullptr;
    if (var_.IsInitialized()) {
      if (type_ == framework::proto::VarType::LOD_TENSOR) {
        tensor = &(var_.Get<framework::LoDTensor>());
      } else if (type_ == framework::proto::VarType::SELECTED_ROWS) {
        tensor = &(var_.Get<framework::SelectedRows>().value());
      } else {
        VLOG(6) << "Variable " << name_ << " is not initialized";
        return data_type_;
      }
    }
    if (tensor && tensor->IsInitialized()) {
      return tensor->type();
    } else {
      VLOG(6) << "The tensor of variable " << name_ << " is not initialized";
      return data_type_;
    }
  }

166 167 168 169 170 171 172 173
  void SetForwardDataType(framework::proto::VarType::Type data_type) {
    fwd_data_type_ = data_type;
  }

  framework::proto::VarType::Type ForwardDataType() const {
    return fwd_data_type_;
  }

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
  const platform::Place Place() const {
    const framework::Tensor* tensor = nullptr;
    auto place =
        platform::CPUPlace();  // Default place for var not initialized.
    if (var_.IsInitialized()) {
      if (type_ == framework::proto::VarType::LOD_TENSOR) {
        tensor = &(var_.Get<framework::LoDTensor>());
      } else if (type_ == framework::proto::VarType::SELECTED_ROWS) {
        tensor = &(var_.Get<framework::SelectedRows>().value());
      } else {
        VLOG(6) << "Variable " << name_ << " is not initialized";
        return place;
      }
    }
    if (tensor && tensor->IsInitialized()) {
      return tensor->place();
    } else {
      VLOG(6) << "The tensor of variable " << name_ << " is not initialized";
      return place;
    }
  }

196 197 198 199 200 201 202 203 204 205 206
  uint32_t InplaceVersionSnapshot() const { return inplace_version_snapshot_; }

  void ResetInplaceVersion() {
    auto new_version = var_.CurrentInplaceVersion();

    VLOG(6) << "The wrapper version of VariableWrapper '" << name_
            << "' will be updated from " << inplace_version_snapshot_ << "to "
            << new_version;
    inplace_version_snapshot_ = new_version;
  }

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
  bool hasCacheKey(const paddle::framework::OpKernelType& key) {
    return var_cache.find(key) != var_cache.end();
  }

  std::shared_ptr<VariableWrapper> getCacheValue(
      const paddle::framework::OpKernelType& key) {
    return var_cache[key];
  }

  void setCacheValue(const paddle::framework::OpKernelType& key,
                     std::shared_ptr<VariableWrapper> val) {
    var_cache[key] = val;
    return;
  }

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
  /* Hook related methods */
  bool HasHook() const { return !hooks_.empty(); }

  bool HasMutableHook() const { return !mutable_hooks_.empty(); }

  int64_t AddHook(std::shared_ptr<VariableWrapperHook>&& hook) {
    hooks_.emplace(next_hook_id_, std::move(hook));
    return next_hook_id_++;
  }

  bool RemoveHook(const int64_t& hook_id) {
    auto remove_cnt = hooks_.erase(hook_id);
    if (remove_cnt == 0) {
      return false;
    }
    return true;
  }

  const std::map<int64_t, std::shared_ptr<VariableWrapperHook>>& GetHooks()
      const {
    return hooks_;
  }

  void AddMutableHook(std::shared_ptr<InplaceVariableWrapperHook>&& hook) {
    mutable_hooks_.emplace_back(std::move(hook));
  }

  const std::vector<std::shared_ptr<InplaceVariableWrapperHook>>&
  GetMutableHooks() const {
    return mutable_hooks_;
  }

254 255 256 257
 private:
  void SetGradVar(const std::shared_ptr<VariableWrapper>& var) {
    auto shared_var = grad_var_.lock();
    if (shared_var != var) {
258 259 260 261
      PADDLE_ENFORCE_EQ(
          shared_var, nullptr,
          platform::errors::PermissionDenied(
              "Cannot set gradient variable wrapper twice for %s", name_));
262 263 264 265 266 267 268 269 270 271 272 273
      grad_var_ = var;
    }
  }

  void SetGradNode(const std::shared_ptr<GradOpNode>& grad_node) {
    if (!grad_node) {
      grad_node_.reset();
      return;
    }

    auto shared_node = grad_node_.lock();
    if (shared_node != grad_node) {
274 275 276 277 278 279 280
      if (grad_node->InplaceGradNameMap().empty()) {
        // grad_node doesn't have Inplace message
        PADDLE_ENFORCE_EQ(
            shared_node, nullptr,
            platform::errors::PermissionDenied(
                "Cannot set gradient op twice unless using Inplace Strategy."));
      } else if (shared_node) {
281 282 283
        VLOG(3) << "The gradient op of Var (" << Name()
                << ") has been set twice. Because Inplace Strategy is used.";
      }
284 285 286 287
      grad_node_ = grad_node;
    }
  }

288 289 290 291
 private:
  framework::Variable var_;
  std::string name_;

292 293 294 295
  // Used for cache the dtype promotioned variableWrapper in real and complex
  // compute of Paddle Quantum
  std::map<paddle::framework::OpKernelType, std::shared_ptr<VariableWrapper>>
      var_cache;
296 297 298 299 300
  // add this property for users may set stop_gradient themselves and this
  // should override the frameworks setting (-1) unset, (1) true, (0) false
  int overrided_stop_gradient_{-1};
  bool persistable_{false};

301 302 303 304
  // Used for checking whether there is any inplace operation affecting gradient
  // calculation.
  uint32_t inplace_version_snapshot_{0};

305 306
  framework::proto::VarType::Type type_{framework::proto::VarType::LOD_TENSOR};
  framework::proto::VarType::Type data_type_{framework::proto::VarType::FP32};
307

308 309 310 311 312 313 314
  // See [ Why need handle complex gradient to real gradient? ]
  // Used for grad var to get the data type of its corresponding forward var,
  // if inconsistent, the data type of grad var needs to be casted to be
  // consistent with forward var
  framework::proto::VarType::Type fwd_data_type_{
      static_cast<framework::proto::VarType::Type>(-1)};

315 316
  std::weak_ptr<VariableWrapper> grad_var_;
  std::weak_ptr<GradOpNode> grad_node_;
317

318 319 320 321
  // TODO(zhouwei): fix bug of Tensor.clear_gradient(), function SetIsEmpty()
  // isn't need
  bool is_empty_{false};

322 323 324 325 326 327 328 329
  // NOTE(chenweihang): only grad var can hold hooks now
  int64_t next_hook_id_{0};
  // Hooks used to register hook for grad var, support adding and removing,
  // key is the accumulated int64_t value
  std::map<int64_t, std::shared_ptr<VariableWrapperHook>> hooks_;
  // Hooks executed after the execution of the entire backward process is over,
  // currently only supported for reducing in distributed training
  std::vector<std::shared_ptr<InplaceVariableWrapperHook>> mutable_hooks_;
330 331 332 333
};

}  // namespace imperative
}  // namespace paddle