run.sh 3.3 KB
Newer Older
D
dzhwinter 已提交
1 2 3
#!/bin/bash
# This script benchmarking the PaddlePaddle Fluid on
# single thread single GPU.
D
dzhwinter 已提交
4 5 6

#export FLAGS_fraction_of_gpu_memory_to_use=0.0
export CUDNN_PATH=/paddle/cudnn_v5
D
dzhwinter 已提交
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

# disable openmp and mkl parallel
#https://github.com/PaddlePaddle/Paddle/issues/7199
export MKL_NUM_THREADS=1
export OMP_NUM_THREADS=1
ht=`lscpu |grep "per core"|awk -F':' '{print $2}'|xargs`
if [ $ht -eq 1 ]; then # HT is OFF
    if [ -z "$KMP_AFFINITY" ]; then
        export KMP_AFFINITY="granularity=fine,compact,0,0"
    fi
    if [ -z "$OMP_DYNAMIC" ]; then
        export OMP_DYNAMIC="FALSE"
    fi
else # HT is ON
    if [ -z "$KMP_AFFINITY" ]; then
        export KMP_AFFINITY="granularity=fine,compact,1,0"
    fi
fi
# disable multi-gpu if have more than one
export CUDA_VISIBLE_DEVICES=0
export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=$CUDNN_PATH:$LD_LIBRARY_PATH

D
dzhwinter 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
# only query the gpu used
nohup stdbuf -oL nvidia-smi \
      --id=${CUDA_VISIBLE_DEVICES} \
      --query-gpu=timestamp \
      --query-compute-apps=pid,process_name,used_memory \
      --format=csv \
      --filename=mem.log  \
      -l 1 &
# mnist
# mnist gpu mnist 128
FLAGS_benchmark=true stdbuf -oL python fluid/mnist.py \
               --device=GPU \
               --batch_size=128 \
               --skip_batch_num=5 \
               --iterations=500 \
               2>&1 | tee -a mnist_gpu_128.log
D
dzhwinter 已提交
46 47

# vgg16
D
dzhwinter 已提交
48 49
# gpu cifar10 128
FLAGS_benchmark=true stdbuf -oL python fluid/vgg16.py \
D
dzhwinter 已提交
50 51 52
               --device=GPU \
               --batch_size=128 \
               --skip_batch_num=5 \
D
dzhwinter 已提交
53 54 55 56 57 58 59 60 61 62 63
               --iterations=30 \
               2>&1 | tee -a vgg16_gpu_128.log

# flowers gpu  128
FLAGS_benchmark=true stdbuf -oL python fluid/vgg16.py \
               --device=GPU \
               --batch_size=32 \
               --data_set=flowers \
               --skip_batch_num=5 \
               --iterations=30 \
               2>&1 | tee -a vgg16_gpu_flowers_32.log
D
dzhwinter 已提交
64 65 66

# resnet50
# resnet50 gpu cifar10 128
D
dzhwinter 已提交
67
FLAGS_benchmark=true stdbuf -oL python fluid/resnet50.py \
D
dzhwinter 已提交
68 69 70 71 72 73
               --device=GPU \
               --batch_size=128 \
               --data_set=cifar10 \
               --model=resnet_cifar10 \
               --skip_batch_num=5 \
               --iterations=30 \
D
dzhwinter 已提交
74 75 76 77 78 79 80 81 82 83 84
               2>&1 | tee -a resnet50_gpu_128.log

# resnet50 gpu flowers 64
FLAGS_benchmark=true stdbuf -oL python fluid/resnet50.py \
               --device=GPU \
               --batch_size=64 \
               --data_set=flowers \
               --model=resnet_imagenet \
               --skip_batch_num=5 \
               --iterations=30 \
               2>&1 | tee -a resnet50_gpu_flowers_64.log
D
dzhwinter 已提交
85 86

# lstm
D
dzhwinter 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
# lstm gpu imdb 32 # tensorflow only support batch=32
FLAGS_benchmark=true stdbuf -oL python fluid/stacked_dynamic_lstm.py \
               --device=GPU \
               --batch_size=32 \
               --skip_batch_num=5 \
               --iterations=30 \
               --hidden_dim=512 \
               --emb_dim=512 \
               --crop_size=1500 \
               2>&1 | tee -a lstm_gpu_32.log

# seq2seq
# seq2seq gpu wmb 128
FLAGS_benchmark=true stdbuf -oL python fluid/machine_translation.py \
               --device=GPU \
               --batch_size=128 \
               --skip_batch_num=5 \
               --iterations=30 \
               2>&1 | tee -a lstm_gpu_128.log