backward_test.cc 13.6 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

Y
Yu Yang 已提交
15
#include "paddle/framework/backward.h"
D
dongzhihong 已提交
16

Y
Yu Yang 已提交
17 18
#include <gtest/gtest.h>
#include "paddle/framework/op_registry.h"
Y
Yan Chunwei 已提交
19 20
#include "paddle/operators/net_op.h"
#include "paddle/operators/type_alias.h"
Y
Yu Yang 已提交
21

Y
Yu Yang 已提交
22 23 24 25 26
namespace paddle {
namespace framework {

class EmptyOp : public OperatorBase {
 public:
Y
Yu Yang 已提交
27 28
  void InferShape(const Scope &scope) const override {}
  void Run(const Scope &scope,
Y
Yu Yang 已提交
29 30 31
           const platform::DeviceContext &dev_ctx) const override {}
};

Y
Yu Yang 已提交
32
class RowWiseAddOpMaker : public OpProtoAndCheckerMaker {
Y
Yu Yang 已提交
33
 public:
Y
Yu Yang 已提交
34
  RowWiseAddOpMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yu Yang 已提交
35 36 37 38 39 40 41 42
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input X of Add").IgnoreGradient();
    AddInput("b", "Bias of Add").IgnoreGradient();
    AddOutput("Out", "Out of Add").IgnoreGradient();
    AddComment("Add Op");
  }
};

Y
Yu Yang 已提交
43 44 45 46
class MulOpMaker : public OpProtoAndCheckerMaker {
 public:
  MulOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
Y
Yu Yang 已提交
47 48
    AddInput("X", "A");
    AddInput("Y", "B");
Y
Yu Yang 已提交
49 50 51 52 53 54 55 56 57 58
    AddOutput("Out", "Out");
    AddComment("Mul");
  }
};

class SigmoidOpMaker : public OpProtoAndCheckerMaker {
 public:
  SigmoidOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "X");
Y
Yu Yang 已提交
59
    AddOutput("Out", "Y");
Y
Yu Yang 已提交
60 61 62 63
    AddComment("Sigmoid");
  }
};

D
dongzhihong 已提交
64 65 66 67 68
class NoGradOpMaker : public OpProtoAndCheckerMaker {
 public:
  NoGradOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "X input");
Y
Yu Yang 已提交
69
    AddOutput("Out", "Y output");
D
dongzhihong 已提交
70 71 72 73
    AddComment("NoGradOp, same input output. no Grad");
  }
};

Y
Yan Chunwei 已提交
74
class FcOp : public ops::NetOp {
Y
Yu Yang 已提交
75 76
 public:
  void Init() override {
Y
Yu Yang 已提交
77 78 79
    AddOp(OpRegistry::CreateOp("mul",
                               {{"X", {Input("X")}}, {"Y", {Input("W")}}},
                               {{"Out", {Output("mul_result")}}}, {}));
Y
Yu Yang 已提交
80
    auto b_name = Input("b");
Y
Yu Yang 已提交
81
    std::string before_act = "mul_result";
82
    if (b_name != kEmptyVarName) {
Y
Yu Yang 已提交
83 84 85
      AddOp(OpRegistry::CreateOp(
          "rowwise_add", {{"X", {Output("mul_result")}}, {"b", {b_name}}},
          {{"Out", {Output("add_result")}}}, {}));
Y
Yu Yang 已提交
86 87 88
      before_act = "add_result";
    } else {
      auto out_varname = Output("add_result");
89 90
      if (out_varname != kEmptyVarName) {
        this->Rename(out_varname, kEmptyVarName);
Y
Yu Yang 已提交
91
      }
Y
Yu Yang 已提交
92
    }
Y
Yu Yang 已提交
93

Y
Yu Yang 已提交
94 95
    AddOp(OpRegistry::CreateOp("sigmoid", {{"X", {Output(before_act)}}},
                               {{"Out", {Output("Out")}}}, {}));
Y
Yu Yang 已提交
96 97 98 99 100 101 102 103 104 105 106
    CompleteAddOp(false);
  }
};

class FcOpMaker : public OpProtoAndCheckerMaker {
 public:
  FcOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "x");
    AddInput("W", "w");
    AddInput("b", "b");
Y
Yu Yang 已提交
107 108
    AddOutput("mul_result", "").SetTemporary();
    AddOutput("add_result", "").SetTemporary();
Y
Yu Yang 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    AddOutput("Out", "");
    AddComment("");
  }
};

class ManyOutputOpMaker : public OpProtoAndCheckerMaker {
 public:
  ManyOutputOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("x", "x");
    AddOutput("y", "y");
    AddOutput("z", "z");
    AddComment("");
  }
};

class FillZeroOpMaker : public OpProtoAndCheckerMaker {
 public:
  FillZeroOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("x", "x");
    AddOutput("out", "out");
    AddComment("");
  }
};
Y
Yu Yang 已提交
134 135 136 137 138 139 140 141 142 143

class AddOpMaker : public OpProtoAndCheckerMaker {
 public:
  AddOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "x").SetMultiple();
    AddOutput("Y", "y");
    AddComment("");
  }
};
Y
Yu Yang 已提交
144 145 146 147
}  // namespace framework
}  // namespace paddle

namespace f = paddle::framework;
Y
Yu Yang 已提交
148 149 150 151 152 153 154
using EnforceNotMet = paddle::platform::EnforceNotMet;
REGISTER_OP(rowwise_add, f::EmptyOp, f::RowWiseAddOpMaker);
REGISTER_GRADIENT_OP(rowwise_add, rowwise_add_grad, f::EmptyOp);
REGISTER_OP(mul, f::EmptyOp, f::MulOpMaker);
REGISTER_GRADIENT_OP(mul, mul_grad, f::EmptyOp);
REGISTER_OP(sigmoid, f::EmptyOp, f::SigmoidOpMaker);
REGISTER_GRADIENT_OP(sigmoid, sigmoid_grad, f::EmptyOp);
D
dongzhihong 已提交
155
REGISTER_OP(nograd, f::EmptyOp, f::NoGradOpMaker);
Y
Yu Yang 已提交
156
REGISTER_OP(fill_zeros_like, f::EmptyOp, f::FillZeroOpMaker);
Y
Yu Yang 已提交
157 158
REGISTER_OP(add, f::EmptyOp, f::AddOpMaker);
REGISTER_GRADIENT_OP(add, add_grad, f::EmptyOp);
D
dongzhihong 已提交
159 160 161
REGISTER_OP(fc, f::FcOp, f::FcOpMaker);
REGISTER_OP(many_output_op, f::EmptyOp, f::ManyOutputOpMaker);
REGISTER_GRADIENT_OP(many_output_op, many_output_op_grad, f::EmptyOp);
Y
Yu Yang 已提交
162

Y
Yu Yang 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
//
// TEST(Backward, simple_op_grad) {
//  auto fwd = f::OpRegistry::CreateOp(
//      "rowwise_add", {{"X", {"X"}}, {"b", {"b"}}}, {{"Out", {"Out"}}}, {});
//  ASSERT_NE(fwd, nullptr);
//  auto gop = f::OpRegistry::CreateGradOp(*fwd);
//  ASSERT_EQ(4UL, gop->inputs_.size());
//  ASSERT_EQ(f::kEmptyVarName, gop->inputs_[0]);
//  ASSERT_EQ("rowwise_add_grad", gop->type_);
//  ASSERT_EQ("X" + f::kGradVarSuffix, gop->outputs_[0]);
//  ASSERT_EQ("b" + f::kGradVarSuffix, gop->outputs_[1]);
//
//  ASSERT_EQ("X" + f::kGradVarSuffix, gop->Output("X" + f::kGradVarSuffix));
//}
//
// TEST(Backward, simple_op_not_need_grad) {
//  auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
//  ASSERT_NE(fwd, nullptr);
//  auto gop = f::Backward(*fwd, {"X"});
//  ASSERT_EQ(std::find(gop->outputs_.begin(), gop->outputs_.end(),
//                      "X" + f::kGradVarSuffix),
//            gop->outputs_.end());
//
//  auto no_input_gop = f::Backward(*fwd, {"X", "b"});
//  ASSERT_NE(no_input_gop, nullptr);
//  ASSERT_TRUE(no_input_gop->IsNetOp());
//  ASSERT_EQ(0UL,
//            std::static_pointer_cast<ops::NetOp>(no_input_gop)->ops_.size());
//}
//
// TEST(Backward, net_fc_backward_normal) {
//  std::shared_ptr<f::OperatorBase> fwd = f::OpRegistry::CreateOp(
//      "fc", {"X", "w", "b"}, {"mul_result", "add_result", "out"}, {});
//  ASSERT_NE(fwd, nullptr);
//  std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
//  ASSERT_TRUE(gop->IsNetOp());
//  auto net = static_cast<ops::NetOp *>(gop.get());
//
//  ASSERT_NO_THROW(net->DebugString());
//
//  ASSERT_EQ(3UL, net->ops_.size());
//
//  f::OperatorBase &d_sigmoid = *net->ops_[0];
//  ASSERT_EQ("sigmoid_grad", d_sigmoid.type_);
//
//  f::OperatorBase &d_add = *net->ops_[1];
//  ASSERT_EQ("rowwise_add_grad", d_add.type_);
//
//  f::OperatorBase &d_mul = *net->ops_[2];
//  ASSERT_EQ("mul_grad", d_mul.type_);
//}
//
// TEST(Backward, net_fc_backward_not_have_b) {
//  std::shared_ptr<f::OperatorBase> fwd =
//      f::OpRegistry::CreateOp("fc", {"X", "w", f::kEmptyVarName},
//                              {"mul_result", "add_result", "tmp"}, {});
//  ASSERT_NE(fwd, nullptr);
//  std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
//  ASSERT_TRUE(gop->IsNetOp());
//  auto net = static_cast<ops::NetOp *>(gop.get());
//
//  ASSERT_NO_THROW(net->DebugString());
//
//  ASSERT_EQ(2UL, net->ops_.size());
//
//  f::OperatorBase &d_sigmoid = *net->ops_[0];
//  ASSERT_EQ("sigmoid_grad", d_sigmoid.type_);
//
//  f::OperatorBase &d_mul = *net->ops_[1];
//  ASSERT_EQ("mul_grad", d_mul.type_);
//}
//
// TEST(Backward, net_input_of_network_not_need_grad) {
//  ops::NetOp net;
//  net.AddOp(f::OpRegistry::CreateOp("fc", {"X", "W1", "b1"},
//                                    {"mul_tmp_0", "add_tmp_0", "hidden0"},
//                                    {}));
//  net.AddOp(f::OpRegistry::CreateOp("fc", {"hidden0", "W2", "b2"},
//                                    {"mul_tmp_1", "add_tmp_1", "hidden1"},
//                                    {}));
//  net.CompleteAddOp();
//  auto bwd = Backward(net, {"X"});  // X@GRAD is not need.
//  ASSERT_TRUE(bwd->IsNetOp());
//  auto bwd_net = static_cast<ops::NetOp *>(bwd.get());
//
//  std::unordered_set<std::string> all_output =
//  std::unordered_set<std::string>(
//      bwd_net->outputs_.begin(), bwd_net->outputs_.end());
//  all_output.erase(f::kEmptyVarName);
//
//  for (auto &out : {"W1", "b1", "hidden0", "W2", "b2"}) {
//    ASSERT_NE(all_output.find(out + f::kGradVarSuffix), all_output.end());
//  }
//
//  // Not Generated X
//  ASSERT_EQ(all_output.find("X" + f::kGradVarSuffix), all_output.end());
//
//  ASSERT_EQ(2UL, bwd_net->ops_.size());
//  ASSERT_TRUE(bwd_net->ops_[1]->IsNetOp());
//  auto first_fc_grad = static_cast<ops::NetOp *>(bwd_net->ops_[1].get());
//  ASSERT_EQ(3UL, first_fc_grad->ops_.size());
//  ASSERT_EQ(f::kEmptyVarName,
//            first_fc_grad->ops_[2]->Output("A" + f::kGradVarSuffix));
//}
//
// TEST(Backward, net_shared_weight) {
//  ops::NetOp net;
//  net.AddOp(f::OpRegistry::CreateOp("mul", {"X", "W"}, {"Out"}, {}));
//  net.AddOp(f::OpRegistry::CreateOp("mul", {"Out", "W"}, {"FinalOut"}, {}));
//  net.CompleteAddOp();
//
//  auto bwd = f::Backward(net, {});
//  ASSERT_TRUE(bwd->IsNetOp());
//  auto bwd_net = static_cast<ops::NetOp *>(bwd.get());
//  ASSERT_EQ(3UL, bwd_net->ops_.size());
//  ASSERT_EQ("add", bwd_net->ops_[2]->type_);
//}
//
// TEST(Backward, op_register_grad_not_for_network) {
//  auto fwd = f::OpRegistry::CreateOp(
//      "fc", {"X", "W", "b"}, {"mul_out", "add_out", "out1"},
//      {{"temporary_index", std::vector<int>{0, 1}}});
//
//  ASSERT_THROW(f::OpRegistry::CreateGradOp(*fwd), EnforceNotMet);
//}
//
// TEST(Backward, op_all_input_are_not_need) {
//  auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
//  auto backward = f::Backward(*fwd, {"X", "b"});
//  ASSERT_TRUE(backward->IsNetOp());
//  auto net = static_cast<ops::NetOp *>(backward.get());
//  ASSERT_TRUE(net->ops_.empty());
//}
//
// TEST(Backward, op_all_output_are_not_need) {
//  auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
//  auto backward = f::Backward(*fwd, {"Out"});
//  ASSERT_TRUE(backward->IsNetOp());
//  auto net = static_cast<ops::NetOp *>(backward.get());
//  ASSERT_TRUE(net->ops_.empty());
//}
//
// TEST(Backward, op_part_of_output_are_not_need) {
//  auto fwd = f::OpRegistry::CreateOp("many_output_op", {"X"}, {"Y", "Z"}, {});
//  auto backward = f::Backward(*fwd, {"Z"});
//  ASSERT_TRUE(backward->IsNetOp());
//  auto net = static_cast<ops::NetOp *>(backward.get());
//  ASSERT_EQ(net->ops_.size(), 2UL);
//
//  auto &fill_zero = *net->ops_[0];
//  ASSERT_EQ("fill_zeros_like", fill_zero.type_);
//  ASSERT_EQ(1UL, fill_zero.inputs_.size());
//  ASSERT_EQ("Z", fill_zero.inputs_[0]);
//  ASSERT_EQ(1UL, fill_zero.outputs_.size());
//  ASSERT_EQ("Z" + f::kZeroVarSuffix, fill_zero.outputs_[0]);
//
//  auto &d_many_out = *net->ops_[1];
//  ASSERT_EQ("many_output_op_grad", d_many_out.type_);
//  ASSERT_EQ(1UL + 2UL + 2UL, d_many_out.inputs_.size());  // I/O/OG
//  ASSERT_EQ("Z" + f::kZeroVarSuffix, d_many_out.Input("z" +
//  f::kGradVarSuffix));
//  ASSERT_EQ("Y" + f::kGradVarSuffix, d_many_out.Input("y" +
//  f::kGradVarSuffix));
//  ASSERT_EQ("X" + f::kGradVarSuffix,
//            d_many_out.Output("x" + f::kGradVarSuffix));
//}
//
// TEST(Backward, op_part_of_input_are_not_need) {
//  auto fwd = f::OpRegistry::CreateOp("mul", {"a", "b"}, {"out"}, {});
//  auto backward = f::Backward(*fwd, {"a"});
//  auto &grad_mul = *backward;
//  ASSERT_EQ(grad_mul.type_, "mul_grad");
//  ASSERT_EQ(grad_mul.inputs_.size(), 2UL + 1UL + 1UL);
//  ASSERT_EQ(grad_mul.outputs_.size(), 2UL);
//  ASSERT_EQ(grad_mul.Output("A" + f::kGradVarSuffix), f::kEmptyVarName);
//  ASSERT_EQ(grad_mul.Output("B" + f::kGradVarSuffix), "b" +
//  f::kGradVarSuffix);
//  ASSERT_EQ(grad_mul.Input("Out" + f::kGradVarSuffix),
//            "out" + f::kGradVarSuffix);
//  ASSERT_EQ(grad_mul.Input("A"), "a");
//  ASSERT_EQ(grad_mul.Input("B"), "b");
//  ASSERT_EQ(grad_mul.Input("Out"), "out");
//}
//
// TEST(Backward, linear_net_intermediate_variable_has_no_grad) {
//  ops::NetOp net;
//  net.AddOp(f::OpRegistry::CreateOp("fc", {"x1", "w1", "b1"},
//                                    {"mul_out1", "add_out1", "out1"}, {}));
//  net.AddOp(f::OpRegistry::CreateOp("fc", {"out1", "w2", "b2"},
//                                    {"mul_out2", "tmp_out2", "out2"}, {}));
//  net.AddOp(f::OpRegistry::CreateOp("fc", {"out2", "w3", "b3"},
//                                    {"mul_out3", "tmp_out3", "out3"}, {}));
//  net.CompleteAddOp();
//  auto backward = f::Backward(net, {"mul_out2", "tmp_out2", "out2"});
//  ASSERT_TRUE(backward->IsNetOp());
//  auto bwd_net = static_cast<ops::NetOp *>(backward.get());
//  ASSERT_EQ(bwd_net->ops_.size(), 3UL);
//  auto &grad_fc = *bwd_net->ops_[0];
//  EXPECT_EQ(grad_fc.inputs_.size(),
//            3UL       /* external input number */
//                + 1UL /* external output number*/
//                + 1UL /* number of gradient of external output*/
//                + 2U /* internal variable number*/);
//  EXPECT_EQ(grad_fc.outputs_.size(), 2UL       /* input number of mul*/
//                                         + 2UL /* input number of rowwise_add
//                                         */
//                                         + 1UL /* input number of sigmod */);
//  EXPECT_EQ(bwd_net->ops_[1]->inputs_.size(), 0UL);
//  EXPECT_EQ(bwd_net->ops_[1]->outputs_.size(), 0UL);
//  EXPECT_EQ(bwd_net->ops_[2]->inputs_.size(), 0UL);
//  EXPECT_EQ(bwd_net->ops_[2]->outputs_.size(), 0UL);
//}