auto_parallel_gradient_merge.py 14.1 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18 19 20
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from collections import OrderedDict
from typing import List, Tuple, Dict, Any

import paddle
from paddle.framework import core
21
from paddle.fluid import layers
22 23
from paddle.fluid.framework import program_guard, device_guard
from .pass_base import PassBase, PassType, register_pass
24
from paddle.distributed.auto_parallel.utils import set_var_dist_attr, is_optimize_op, OpRole, OP_ROLE_KEY
25 26
from paddle.distributed.auto_parallel.utils import naive_set_dist_op_attr_for_program_by_mesh_and_mapping
from paddle.distributed.auto_parallel.process_group import get_world_process_group
27

28
world_process_group = get_world_process_group()
29 30 31 32 33 34 35 36 37 38 39


def _remove_and_get_optimizer_op(main_program, dist_context):
    # 1 create tmp block
    # 2 mv optimizer op from global program to tmp block
    # 3 del the op from dist_context
    main_block = main_program.global_block()
    temp_block = main_program._create_block()
    removed_op_idx = []
    optimize_ops_desc = []
    for idx, op in enumerate(main_block.ops):
40
        if is_optimize_op(op):
41 42 43 44 45 46 47 48 49 50 51
            # append optimizer op to tmp block
            new_op_desc = temp_block.desc.append_op()
            new_op_desc.copy_from(op.desc)
            optimize_ops_desc.append(new_op_desc)
            removed_op_idx.append(idx)

            # del op from dist_context
            if dist_context:
                dist_context.del_dist_op_for_program(op)

    for idx in removed_op_idx[::-1]:
52 53
        main_block._remove_op(idx, sync=False)
    main_block._sync_with_cpp()
54 55 56 57 58 59 60 61 62 63 64

    return optimize_ops_desc


def _remove_op_role_var(param, grad):
    op_maker = core.op_proto_and_checker_maker
    op = grad.op
    if op.has_attr(op_maker.kOpRoleVarAttrName()):
        op._remove_attr(op_maker.kOpRoleVarAttrName())


65
def _get_gm_cond_var(main_program, k_steps, dist_context):
66 67
    main_block = main_program.global_block()
    # Add const var
68 69 70 71 72 73
    k_step_var = layers.create_global_var(name="gradient_merge_k",
                                          shape=[1],
                                          value=int(k_steps),
                                          dtype='int32',
                                          persistable=True,
                                          force_cpu=True)
74
    set_var_dist_attr(dist_context, k_step_var, [-1], world_process_group.ranks)
75

76 77 78 79 80 81
    zero_var = layers.create_global_var(name="gradient_merge_zero",
                                        shape=[1],
                                        value=int(0),
                                        dtype='int32',
                                        persistable=True,
                                        force_cpu=True)
82
    set_var_dist_attr(dist_context, zero_var, [-1], world_process_group.ranks)
83 84

    # Add step var & cond var
85 86 87 88 89 90
    step_var = layers.create_global_var(name="gradient_merge_step",
                                        shape=[1],
                                        value=int(0),
                                        dtype='int32',
                                        persistable=True,
                                        force_cpu=True)
91
    set_var_dist_attr(dist_context, step_var, [-1], world_process_group.ranks)
92

93 94 95
    cond_var = main_block.create_var(name="gradient_merge_cond",
                                     shape=[1],
                                     dtype='bool')
96
    set_var_dist_attr(dist_context, cond_var, [-1], world_process_group.ranks)
97 98

    with device_guard("cpu"):
99 100 101 102 103 104
        # step_var += 1
        increment_op = main_block.append_op(type='increment',
                                            inputs={'X': [step_var]},
                                            outputs={'Out': [step_var]},
                                            attrs={
                                                'step': float(1.0),
105
                                                OP_ROLE_KEY: OpRole.Backward
106 107 108 109
                                            })
        naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
            increment_op, world_process_group.ranks, [-1], dist_context)
        # step_var %= k_step
110 111 112 113 114 115 116 117
        elementwise_mod_op = main_block.append_op(type='elementwise_mod',
                                                  inputs={
                                                      'X': step_var,
                                                      'Y': k_step_var
                                                  },
                                                  outputs={'Out': step_var},
                                                  attrs={
                                                      'axis': -1,
118
                                                      'use_mkldnn': False,
119 120
                                                      OP_ROLE_KEY:
                                                      OpRole.Backward
121
                                                  })
122 123
        naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
            elementwise_mod_op, world_process_group.ranks, [-1], dist_context)
124
        # cond_var = (step_var == 0)
125 126 127 128 129
        equal_op = main_block.append_op(type='equal',
                                        inputs={
                                            'X': step_var,
                                            'Y': zero_var
                                        },
130
                                        outputs={'Out': cond_var},
131
                                        attrs={OP_ROLE_KEY: OpRole.Backward})
132 133
        naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
            equal_op, world_process_group.ranks, [-1], dist_context)
134 135 136 137 138

    return cond_var


def _append_gradient_merge_backward_op(
139
        main_program, startup_program, params_grads: List[Tuple[Any, Any]],
140
        dist_context) -> Tuple[List[Tuple[Any, Any]], Dict[str, Any]]:
141 142 143 144 145 146 147 148 149 150 151
    main_block = main_program.global_block()
    startup_block = startup_program.global_block()

    # step1: remove grad.op's op_role_var
    for param, grad in params_grads:
        assert (
            param.type != core.VarDesc.VarType.SELECTED_ROWS
        ), "SELECTED_ROWS is not supported in GradientMergeOptimizer for now"

        _remove_op_role_var(param, grad)

152 153 154
    # {grad.name: gradient_merge_var.name} to rename opt inputs
    grad_to_gradient_merge = {}
    # {param: gradient_merge_var} to insert scale op and fill_constant op
155 156 157 158 159 160
    new_params_to_grads = []
    # step2: create gradient_merge var and init with 0
    for param, grad in params_grads:
        param_name = param.name
        param_var = main_block.var(param_name)
        assert (param_var is not None)
161 162
        ref_dist_attr = dist_context.get_tensor_dist_attr_for_program(param_var)
        assert ref_dist_attr is not None
163 164 165 166 167
        gradient_merge_var = main_block.create_var(name=param_name +
                                                   "@GRAD@GradientMerge",
                                                   shape=param_var.shape,
                                                   dtype=param_var.dtype,
                                                   persistable=True)
168 169 170 171 172
        ref_process_mesh = ref_dist_attr.process_mesh
        ref_dims_mapping = ref_dist_attr.dims_mapping

        set_var_dist_attr(dist_context, gradient_merge_var, ref_dims_mapping,
                          ref_process_mesh)
173 174 175 176 177 178

        startup_gradient_merge_var = startup_block.create_var(
            name=param_name + "@GRAD@GradientMerge",
            shape=param_var.shape,
            dtype=param_var.dtype,
            persistable=True)
179 180 181 182 183 184 185
        startup_block.append_op(type="fill_constant",
                                outputs={"Out": startup_gradient_merge_var},
                                attrs={
                                    "shape": param_var.shape,
                                    "dtype": param_var.dtype,
                                    "value": float(0),
                                })
186 187

        # grad_merge += grad
188 189 190 191 192 193 194 195
        new_grad_op = main_block.append_op(type="elementwise_add",
                                           inputs={
                                               'X': grad,
                                               'Y': gradient_merge_var
                                           },
                                           outputs={'Out': gradient_merge_var},
                                           attrs={
                                               'axis': -1,
196
                                               'use_mkldnn': False,
197
                                               OP_ROLE_KEY: OpRole.Backward
198
                                           })
199
        new_params_to_grads.append([param, gradient_merge_var])
200
        grad_to_gradient_merge[grad.name] = gradient_merge_var.name
201 202
        naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
            new_grad_op, ref_process_mesh, ref_dims_mapping, dist_context)
203
    return new_params_to_grads, grad_to_gradient_merge
204 205 206


def _create_cond_block_and_update_optimizer(
207
        main_program, cond_var, new_params_to_grads: List[Tuple[Any, Any]],
208
        grad_to_gradient_merge: Dict[str, str], optimize_ops_desc: List[Any],
209 210
        k_steps, avg):

211 212 213 214 215 216 217 218 219 220
    def true_apply_gradient():
        cur_block_idx = main_program.current_block_idx
        cur_block = main_program.current_block()

        # cur_block's forward_block & backward_block is itself
        cur_block._set_forward_block_idx(cur_block_idx)
        op_maker = core.op_proto_and_checker_maker
        if avg:
            for param, new_grad in new_params_to_grads:
                # grad /= k_steps
221 222 223 224 225 226 227 228
                cur_block.append_op(type='scale',
                                    inputs={'X': new_grad},
                                    outputs={'Out': new_grad},
                                    attrs={
                                        'scale': 1.0 / k_steps,
                                        'bias': 0.0,
                                        'bias_after_scale': False
                                    })
229
                new_grad.op._set_attr(OP_ROLE_KEY, OpRole.Optimize)
230 231 232 233 234 235 236 237

        # append optimizer ops
        for op_desc in optimize_ops_desc:
            new_op_desc = cur_block.desc.append_op()
            new_op_desc.copy_from(op_desc)

            #update input/output
            for input_name in new_op_desc.input_arg_names():
238 239 240
                if input_name in grad_to_gradient_merge:
                    new_op_desc._rename_input(
                        input_name, grad_to_gradient_merge[input_name])
241 242

            for output_name in new_op_desc.output_arg_names():
243 244 245
                if output_name in grad_to_gradient_merge:
                    new_op_desc._rename_output(
                        output_name, grad_to_gradient_merge[output_name])
246 247 248 249 250 251

            # remove op_role_var
            if new_op_desc.has_attr(op_maker.kOpRoleVarAttrName()):
                new_op_desc.remove_attr(op_maker.kOpRoleVarAttrName())

            # op's update Grad
252
            if core.grad_var_suffix() in new_op_desc.input_arg_names():
253 254 255 256 257 258 259 260 261 262
                grad_value = new_op_desc.input("Grad")[0]
                # TODO FIXME(xym) support fp16
                grad_merge_value = grad_value + '@GradientMerge'
                new_op_desc.set_input("Grad", [grad_merge_value])

        main_program.global_block()._sync_with_cpp()
        cur_block._sync_with_cpp()

        # clear gradient_merge_vars
        for param, new_grad in new_params_to_grads:
263 264 265 266
            layers.fill_constant(shape=new_grad.shape,
                                 dtype=new_grad.dtype,
                                 value=0.0,
                                 out=new_grad)
267
            new_grad.op._set_attr(OP_ROLE_KEY, op_maker.OpRole.Optimize)
268 269

    layers.cond(cond_var, true_fn=true_apply_gradient, false_fn=None)
270
    cond_op = main_program.global_block().ops[-1]
271
    cond_op._set_attr(OP_ROLE_KEY, OpRole.Optimize)
272 273 274 275


def parse_program(main_program, startup_program, params_grads, k_steps, avg,
                  dist_context):
276
    # 1 remove optimizer_op from main_program
277 278 279 280 281
    optimize_ops_desc = _remove_and_get_optimizer_op(main_program, dist_context)

    # back to block 0
    main_program._rollback()

282
    # 2 append gradient merge backward op to main_program
283
    new_params_to_grads, grad_to_gradient_merge = _append_gradient_merge_backward_op(
284 285 286 287
        main_program, startup_program, params_grads, dist_context)

    # 3 create gradient_merge_cond
    cond_var = _get_gm_cond_var(main_program, k_steps, dist_context)
288 289

    # 4 create ConditionalBlock and append gradient merge optimizer ops
290 291
    _create_cond_block_and_update_optimizer(main_program, cond_var,
                                            new_params_to_grads,
292
                                            grad_to_gradient_merge,
293
                                            optimize_ops_desc, k_steps, avg)
294 295 296 297


@register_pass("auto_parallel_gradient_merge_pass")
class GradientMergePass(PassBase):
298

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
    def __init__(self):
        super(GradientMergePass, self).__init__()
        self.set_attr("k_steps", -1)
        self.set_attr("avg", True)

    def _check_self(self):
        if self.get_attr("k_steps") < 1:
            return False
        return True

    def _check_conflict(self, other_pass):
        return True

    def _type(self):
        return PassType.COMM_OPT

    def _apply_single_impl(self, main_program, startup_program, context):
        k_steps = self.get_attr("k_steps", -1)
        avg = self.get_attr("avg", False)
        dist_context = self.get_attr("dist_context")
        params_grads = self.get_attr("params_grads")
        with paddle.static.program_guard(main_program, startup_program):
            parse_program(main_program, startup_program, params_grads, k_steps,
                          avg, dist_context)

        main_program._sync_with_cpp()