conv_kernel.cc 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/conv_kernel.h"

#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/conv_util.h"

namespace phi {

template <typename T, typename Context>
void ConvKernel(const Context& dev_ctx,
                const DenseTensor& input,
                const DenseTensor& filter,
                const std::vector<int>& strides,
                const std::vector<int>& paddings_t,
                const std::string& padding_algorithm,
                const std::vector<int>& dilations_t,
31
                int groups,
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
                const std::string& data_format,
                DenseTensor* out) {
  using XPUT = typename XPUTypeTrait<T>::Type;
  std::vector<int> paddings = paddings_t;
  std::vector<int> dilations = dilations_t;
  // The filter will be reshaped in the calculations,
  // so here use an assignment operation,
  // that avoids modifying the variable in the Scope.
  dev_ctx.template Alloc<T>(out);

  PADDLE_ENFORCE_EQ(
      data_format == "NDHWC",
      false,
      phi::errors::InvalidArgument(
          ("XPU does not support data_format is NDHWC in conv op.")));

  phi::DDim in_data_dims =
      phi::slice_ddim(input.dims(), 2, input.dims().size());
  phi::DDim filter_data_dims =
      phi::slice_ddim(filter.dims(), 2, filter.dims().size());
  std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(
      &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);

  int batch_size = static_cast<int>(input.dims()[0]);
  int img_c = static_cast<int>(input.dims()[1]);
  int img_h = static_cast<int>(input.dims()[2]);
  int img_w = static_cast<int>(input.dims()[3]);
  int f = static_cast<int>(filter.dims()[0]);
  bool is_nchw = true;
  if (data_format == "NHWC") {
    img_c = static_cast<int>(input.dims()[3]);
    img_h = static_cast<int>(input.dims()[1]);
    img_w = static_cast<int>(input.dims()[2]);
    is_nchw = false;
  }

  const XPUT* input_data = reinterpret_cast<const XPUT*>(input.data<T>());
  const XPUT* filter_data = reinterpret_cast<const XPUT*>(filter.data<T>());
  XPUT* output_data = reinterpret_cast<XPUT*>(out->data<T>());

  xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());

  XPUT* filter_data_tmp;
  const XPUT* filter_data_ptr = filter_data;
  if (data_format == "NHWC") {
    filter_data_tmp = RAII_GUARD.alloc<XPUT>(filter.numel());
    PADDLE_ENFORCE_XDNN_NOT_NULL(filter_data_tmp);
    std::vector<int> filter_shape = phi::vectorize<int>(filter.dims());
    int r = xpu::transpose<XPUT>(dev_ctx.x_context(),
                                 filter_data,
                                 filter_data_tmp,
                                 filter_shape,
                                 {0, 2, 3, 1});
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "transpose");
    filter_data_ptr = reinterpret_cast<const XPUT*>(filter_data_tmp);
  }

  int r = xpu::conv2d<XPUT, XPUT, XPUT, int16_t>(dev_ctx.x_context(),
                                                 input_data,
                                                 filter_data_ptr,
                                                 output_data,
                                                 batch_size,
                                                 img_c,
                                                 img_h,
                                                 img_w,
                                                 f,
                                                 ksize,
                                                 strides,
                                                 paddings,
                                                 dilations,
                                                 groups,
                                                 nullptr,
                                                 nullptr,
                                                 nullptr,
                                                 is_nchw);
  PADDLE_ENFORCE_XDNN_SUCCESS(r, "conv2d");
}

template <typename T, typename Context>
void DepthwiseConvKernel(const Context& dev_ctx,
                         const DenseTensor& input,
                         const DenseTensor& filter,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
117
                         const std::string& padding_algorithm,
118 119 120 121 122 123 124 125 126
                         int groups,
                         const std::vector<int>& dilations,
                         const std::string& data_format,
                         DenseTensor* out) {
  ConvKernel<T, Context>(dev_ctx,
                         input,
                         filter,
                         strides,
                         paddings,
127
                         padding_algorithm,
128
                         dilations,
129
                         groups,
130 131 132 133
                         data_format,
                         out);
}

Y
ykkk2333 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
template <typename T, typename Context>
void Conv3DKernel(const Context& dev_ctx,
                  const DenseTensor& input,
                  const DenseTensor& filter,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings_t,
                  const std::string& padding_algorithm,
                  int groups,
                  const std::vector<int>& dilations_t,
                  const std::string& data_format,
                  DenseTensor* out) {
  using XPUT = typename XPUTypeTrait<T>::Type;
  std::vector<int> paddings = paddings_t;
  std::vector<int> dilations = dilations_t;
  // The filter will be reshaped in the calculations,
  // so here use an assignment operation,
  // that avoids modifying the variable in the Scope.
  dev_ctx.template Alloc<T>(out);

  phi::DDim in_data_dims =
      phi::slice_ddim(input.dims(), 2, input.dims().size());
  phi::DDim filter_data_dims =
      phi::slice_ddim(filter.dims(), 2, filter.dims().size());
  std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(
      &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);

  int batch_size = static_cast<int>(input.dims()[0]);
  int img_c = static_cast<int>(input.dims()[1]);
  int img_d = static_cast<int>(input.dims()[2]);
  int img_h = static_cast<int>(input.dims()[3]);
  int img_w = static_cast<int>(input.dims()[4]);
  int f = static_cast<int>(filter.dims()[0]);
  bool is_ncdhw = true;
  if (data_format == "NDHWC") {
    img_c = static_cast<int>(input.dims()[4]);
    img_d = static_cast<int>(input.dims()[1]);
    img_h = static_cast<int>(input.dims()[2]);
    img_w = static_cast<int>(input.dims()[3]);
    is_ncdhw = false;
  }

  XPUT* output_data = reinterpret_cast<XPUT*>(out->data<T>());
  const XPUT* filter_data = reinterpret_cast<const XPUT*>(filter.data<T>());
  const XPUT* input_data = reinterpret_cast<const XPUT*>(input.data<T>());

  xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());

  XPUT* filter_data_tmp;
  const XPUT* filter_data_ptr = filter_data;
  if (data_format == "NDHWC") {
    filter_data_tmp = RAII_GUARD.alloc<XPUT>(filter.numel());
    PADDLE_ENFORCE_XDNN_NOT_NULL(filter_data_tmp);
    std::vector<int> filter_shape = phi::vectorize<int>(filter.dims());
    int r = xpu::transpose<XPUT>(dev_ctx.x_context(),
                                 filter_data,
                                 filter_data_tmp,
                                 filter_shape,
                                 {0, 2, 3, 4, 1});
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "transpose");
    filter_data_ptr = reinterpret_cast<const XPUT*>(filter_data_tmp);
  }

  int r = xpu::conv3d<XPUT, XPUT, XPUT, int16_t>(dev_ctx.x_context(),
                                                 input_data,
                                                 filter_data_ptr,
                                                 output_data,
                                                 batch_size,
                                                 img_c,
                                                 img_d,
                                                 img_h,
                                                 img_w,
                                                 f,
                                                 ksize,
                                                 strides,
                                                 paddings,
                                                 dilations,
                                                 groups,
                                                 nullptr,
                                                 nullptr,
                                                 nullptr,
                                                 is_ncdhw);
  PADDLE_ENFORCE_XDNN_SUCCESS(r, "conv3d");
}

219 220 221 222 223 224
}  // namespace phi

PD_REGISTER_KERNEL(
    conv2d, XPU, ALL_LAYOUT, phi::ConvKernel, float, phi::dtype::float16) {}
PD_REGISTER_KERNEL(
    depthwise_conv2d, XPU, ALL_LAYOUT, phi::DepthwiseConvKernel, float) {}
Y
ykkk2333 已提交
225 226
PD_REGISTER_KERNEL(
    conv3d, XPU, ALL_LAYOUT, phi::Conv3DKernel, float, phi::dtype::float16) {}