qat2_int8_nlp_comparison.py 12.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
#   copyright (c) 2020 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
#     http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.

import unittest
import os
import sys
import argparse
import logging
import struct
import six
import numpy as np
import time
import paddle
import paddle.fluid as fluid
from paddle.fluid.framework import IrGraph
from paddle.fluid.contrib.slim.quantization import Qat2Int8MkldnnPass
from paddle.fluid import core

logging.basicConfig(format='%(asctime)s-%(levelname)s: %(message)s')
_logger = logging.getLogger(__name__)
_logger.setLevel(logging.INFO)


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch_size', type=int, default=1, help='Batch size.')
    parser.add_argument(
        '--skip_batch_num',
        type=int,
        default=0,
        help='Number of the first minibatches to skip in performance statistics.'
    )
    parser.add_argument(
        '--debug',
        action='store_true',
        help='If used, the graph of QAT model is drawn.')
    parser.add_argument(
        '--qat_model', type=str, default='', help='A path to a QAT model.')
    parser.add_argument(
51 52 53 54 55
        '--fp32_model',
        type=str,
        default='',
        help='A path to an FP32 model. If empty, the QAT model will be used for FP32 inference.'
    )
56 57 58 59 60 61
    parser.add_argument('--infer_data', type=str, default='', help='Data file.')
    parser.add_argument(
        '--labels', type=str, default='', help='File with labels.')
    parser.add_argument(
        '--batch_num',
        type=int,
62 63 64
        default=0,
        help='Number of batches to process. 0 or less means whole dataset. Default: 0.'
    )
65 66 67 68 69 70
    parser.add_argument(
        '--acc_diff_threshold',
        type=float,
        default=0.01,
        help='Accepted accuracy difference threshold.')
    parser.add_argument(
71
        '--ops_to_quantize',
72 73
        type=str,
        default='',
74 75
        help='A comma separated list of operators to quantize. Only quantizable operators are taken into account. If the option is not used, an attempt to quantize all quantizable operators will be made.'
    )
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

    test_args, args = parser.parse_known_args(namespace=unittest)

    return test_args, sys.argv[:1] + args


class QatInt8NLPComparisonTest(unittest.TestCase):
    """
    Test for accuracy comparison of QAT FP32 and INT8 NLP inference.
    """

    def _reader_creator(self, data_file=None, labels_file=None):
        assert data_file, "The dataset file is missing."
        assert labels_file, "The labels file is missing."

        def reader():
            with open(data_file, 'r') as df:
                with open(labels_file, 'r') as lf:
                    data_lines = df.readlines()
                    labels_lines = lf.readlines()
                    assert len(data_lines) == len(
                        labels_lines
                    ), "The number of labels does not match the length of the dataset."

                    for i in range(len(data_lines)):
                        data_fields = data_lines[i].split(';')
                        assert len(
                            data_fields
                        ) >= 2, "The number of data fields in the dataset is less than 2"
                        buffers = []
                        shape = []
                        for j in range(2):
                            data = data_fields[j].split(':')
                            assert len(
                                data
                            ) >= 2, "Size of data in the dataset is less than 2"
                            # Shape is stored under index 0, while data under 1
                            shape = data[0].split()
                            shape.pop(0)
                            shape_np = np.array(shape).astype("int64")
                            buffer_i = data[1].split()
                            buffer_np = np.array(buffer_i).astype("int64")
                            buffer_np.shape = tuple(shape_np)
                            buffers.append(buffer_np)
                        label = labels_lines[i]
                        yield buffers[0], buffers[1], int(label)

        return reader

    def _get_batch_correct(self, batch_output=None, labels=None):
        total = len(batch_output)
        assert total > 0, "The batch output is empty."
        correct = 0
        for n, output in enumerate(batch_output[0]):
            max_idx = np.where(output == output.max())
            if max_idx == labels[n]:
                correct += 1
        return correct

    def _predict(self,
                 test_reader=None,
                 model_path=None,
                 batch_size=1,
                 batch_num=1,
                 skip_batch_num=0,
                 transform_to_int8=False):
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        inference_scope = fluid.executor.global_scope()
        with fluid.scope_guard(inference_scope):
            if os.path.exists(os.path.join(model_path, '__model__')):
                [inference_program, feed_target_names,
                 fetch_targets] = fluid.io.load_inference_model(model_path, exe)
            else:
                [inference_program, feed_target_names,
                 fetch_targets] = fluid.io.load_inference_model(
                     model_path, exe, 'model', 'params')

            graph = IrGraph(core.Graph(inference_program.desc), for_test=True)
            if (self._debug):
                graph.draw('.', 'qat_orig', graph.all_op_nodes())
            if (transform_to_int8):
                transform_to_mkldnn_int8_pass = Qat2Int8MkldnnPass(
                    self._quantized_ops,
                    _scope=inference_scope,
                    _place=place,
                    _core=core,
                    _debug=self._debug)
                graph = transform_to_mkldnn_int8_pass.apply(graph)

            inference_program = graph.to_program()

            total_correct = 0
            total_samples = 0
            batch_times = []
            ppses = []  # predictions per second
            iters = 0
            infer_start_time = time.time()
            for data in test_reader():
                if batch_num > 0 and iters >= batch_num:
                    break
                if iters == skip_batch_num:
                    total_samples = 0
                    infer_start_time = time.time()
                input0 = np.array([x[0] for x in data]).astype('int64')
                input1 = np.array([x[1] for x in data]).astype('int64')
                labels = np.array([x[2] for x in data]).astype('int64')

                start = time.time()
                out = exe.run(inference_program,
                              feed={
                                  feed_target_names[0]: input0,
                                  feed_target_names[1]: input1
                              },
                              fetch_list=fetch_targets)
                batch_time = (time.time() - start) * 1000  # in miliseconds
                batch_times.append(batch_time)
                batch_correct = self._get_batch_correct(out, labels)
                batch_len = len(data)
                total_samples += batch_len
                total_correct += batch_correct
                batch_acc = float(batch_correct) / float(batch_len)
                pps = batch_len / batch_time * 1000
                ppses.append(pps)
                latency = batch_time / batch_len
                iters += 1
                appx = ' (warm-up)' if iters <= skip_batch_num else ''
                _logger.info(
                    'batch {0}{4}, acc: {1:.4f}, latency: {2:.4f} ms, predictions per sec: {3:.2f}'
                    .format(iters, batch_acc, latency, pps, appx))

            # Postprocess benchmark data
            infer_total_time = time.time() - infer_start_time
            batch_latencies = batch_times[skip_batch_num:]
            batch_latency_avg = np.average(batch_latencies)
            latency_avg = batch_latency_avg / batch_size
            ppses = ppses[skip_batch_num:]
            pps_avg = np.average(ppses)
            acc_avg = float(np.sum(total_correct)) / float(total_samples)
            _logger.info('Total inference run time: {:.2f} s'.format(
                infer_total_time))

            return acc_avg, pps_avg, latency_avg

    def _summarize_performance(self, fp32_pps, fp32_lat, int8_pps, int8_lat):
        _logger.info('--- Performance summary ---')
        _logger.info(
            'FP32: avg predictions per sec: {0:.2f}, avg latency: {1:.4f} ms'.
            format(fp32_pps, fp32_lat))
        _logger.info(
            'INT8: avg predictions per sec: {0:.2f}, avg latency: {1:.4f} ms'.
            format(int8_pps, int8_lat))

    def _compare_accuracy(self, fp32_acc, int8_acc, threshold):
        _logger.info('--- Accuracy summary ---')
        _logger.info(
            'Accepted accuracy drop threshold: {0}. (condition: (FP32_acc - INT8_acc) <= threshold)'
            .format(threshold))
        _logger.info('FP32: avg accuracy: {0:.6f}'.format(fp32_acc))
        _logger.info('INT8: avg accuracy: {0:.6f}'.format(int8_acc))
        # Random outputs give accuracy about 0.33, we assume valid accuracy to be at least 0.5
        assert fp32_acc > 0.5
        assert int8_acc > 0.5
        assert fp32_acc - int8_acc <= threshold

    def test_graph_transformation(self):
        if not fluid.core.is_compiled_with_mkldnn():
            return

        qat_model_path = test_case_args.qat_model
246 247
        assert qat_model_path, 'The QAT model path cannot be empty. Please, use the --qat_model option.'
        fp32_model_path = test_case_args.fp32_model if test_case_args.fp32_model else qat_model_path
248
        data_path = test_case_args.infer_data
249
        assert data_path, 'The dataset path cannot be empty. Please, use the --infer_data option.'
250 251 252 253 254 255
        labels_path = test_case_args.labels
        batch_size = test_case_args.batch_size
        batch_num = test_case_args.batch_num
        skip_batch_num = test_case_args.skip_batch_num
        acc_diff_threshold = test_case_args.acc_diff_threshold
        self._debug = test_case_args.debug
256 257 258
        self._quantized_ops = set()
        if len(test_case_args.ops_to_quantize) > 0:
            self._quantized_ops = set(test_case_args.ops_to_quantize.split(','))
259

260
        _logger.info('FP32 & QAT INT8 prediction run.')
261
        _logger.info('QAT model: {0}'.format(qat_model_path))
262
        _logger.info('FP32 model: {0}'.format(fp32_model_path))
263 264 265 266 267 268 269
        _logger.info('Dataset: {0}'.format(data_path))
        _logger.info('Labels: {0}'.format(labels_path))
        _logger.info('Batch size: {0}'.format(batch_size))
        _logger.info('Batch number: {0}'.format(batch_num))
        _logger.info('Accuracy drop threshold: {0}.'.format(acc_diff_threshold))
        _logger.info('Quantized ops: {0}.'.format(self._quantized_ops))

270
        _logger.info('--- FP32 prediction start ---')
271 272 273 274
        val_reader = paddle.batch(
            self._reader_creator(data_path, labels_path), batch_size=batch_size)
        fp32_acc, fp32_pps, fp32_lat = self._predict(
            val_reader,
275
            fp32_model_path,
276 277 278 279
            batch_size,
            batch_num,
            skip_batch_num,
            transform_to_int8=False)
280
        _logger.info('FP32: avg accuracy: {0:.6f}'.format(fp32_acc))
281 282 283 284 285 286 287 288 289 290
        _logger.info('--- QAT INT8 prediction start ---')
        val_reader = paddle.batch(
            self._reader_creator(data_path, labels_path), batch_size=batch_size)
        int8_acc, int8_pps, int8_lat = self._predict(
            val_reader,
            qat_model_path,
            batch_size,
            batch_num,
            skip_batch_num,
            transform_to_int8=True)
291
        _logger.info('INT8: avg accuracy: {0:.6f}'.format(int8_acc))
292 293 294 295 296 297 298 299 300

        self._summarize_performance(fp32_pps, fp32_lat, int8_pps, int8_lat)
        self._compare_accuracy(fp32_acc, int8_acc, acc_diff_threshold)


if __name__ == '__main__':
    global test_case_args
    test_case_args, remaining_args = parse_args()
    unittest.main(argv=remaining_args)