GradientMachine.cpp 5.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "PaddleAPI.h"
E
emailweixu 已提交
16 17
#include "PaddleAPIPrivate.h"

Z
zhangjinchao01 已提交
18
#include "Internal.h"
Y
Yu Yang 已提交
19
#include "paddle/gserver/gradientmachines/NeuralNetwork.h"
Z
zhangjinchao01 已提交
20 21 22 23 24 25 26 27 28

std::vector<int> GradientMachine::defaultParamTypes = {
    PARAMETER_VALUE, PARAMETER_GRADIENT, PARAMETER_MOMENTUM};

GradientMachine::GradientMachine() : m(new GradientMachinePrivate()) {}

GradientMachine::~GradientMachine() { delete m; }

GradientMachine* GradientMachine::createFromPaddleModelPtr(
29 30
    const void* confPtr,
    GradientMatchineCreateMode mode,
Z
zhangjinchao01 已提交
31
    const std::vector<int>& types) {
E
emailweixu 已提交
32
  auto& conf = *(const paddle::ModelConfig*)(confPtr);
Z
zhangjinchao01 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46
  std::vector<ParameterType> realTypes;
  staticCastVector(&realTypes, types);
  auto machineRawPtr = paddle::GradientMachine::create(conf, mode, realTypes);
  auto machinePtr = std::shared_ptr<paddle::GradientMachine>(machineRawPtr);
  if (machinePtr != nullptr) {
    auto machine = new GradientMachine();
    machine->m->machine = machinePtr;
    return machine;
  } else {
    return nullptr;
  }
}

GradientMachine* GradientMachine::createByConfigProtoStr(
47 48
    const std::string& protoStr,
    GradientMatchineCreateMode mode,
Z
zhangjinchao01 已提交
49 50 51 52 53 54 55 56 57 58 59
    const std::vector<int>& types) {
  paddle::ModelConfig conf;
  conf.ParseFromString(protoStr);
  if (conf.IsInitialized()) {
    return GradientMachine::createFromPaddleModelPtr(&conf, mode, types);
  } else {
    return nullptr;
  }
}

GradientMachine* GradientMachine::createByModelConfig(
60 61
    ModelConfig* conf,
    GradientMatchineCreateMode mode,
Z
zhangjinchao01 已提交
62
    const std::vector<int>& types) {
E
emailweixu 已提交
63
  auto confPtr = &conf->m->conf->getModelConfig();
Z
zhangjinchao01 已提交
64 65 66
  return GradientMachine::createFromPaddleModelPtr(confPtr, mode, types);
}

67 68
void GradientMachine::forward(const Arguments& inArgs,
                              Arguments* outArgs,
Z
zhangjinchao01 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
                              PassType passType) {
  auto& in =
      m->cast<std::vector<paddle::Argument>>(inArgs.getInternalArgumentsPtr());
  auto& out = m->cast<std::vector<paddle::Argument>>(
      outArgs->getInternalArgumentsPtr());
  paddle::PassType pt = (paddle::PassType)(passType);
  m->machine->forward(in, &out, pt);
}

UpdateCallback::~UpdateCallback() {}

void UpdateCallback::apply(Parameter* p) {
  // UNUSED(p);
}

class UpdateCallbackWrapper {
public:
  explicit UpdateCallbackWrapper(const UpdateCallback& callback)
      : callback(const_cast<UpdateCallback&>(callback)) {}

  void operator()(paddle::Parameter* param) {
    auto p = Parameter::createFromRawPtr(&param);
    // @TODO Use Stack variable instead.
    callback.apply(p);
    delete p;
  }

private:
  UpdateCallback& callback;
};

void GradientMachine::backward(const UpdateCallback& callback) {
  m->machine->backward(UpdateCallbackWrapper(callback));
}

void GradientMachine::forwardBackward(const Arguments& inArgs,
105 106
                                      Arguments* outArgs,
                                      PassType passType,
Z
zhangjinchao01 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
                                      const UpdateCallback& callback) {
  auto& in =
      m->cast<std::vector<paddle::Argument>>(inArgs.getInternalArgumentsPtr());
  auto& out = m->cast<std::vector<paddle::Argument>>(
      outArgs->getInternalArgumentsPtr());
  paddle::PassType pt = (paddle::PassType)(passType);
  m->machine->forwardBackward(in, &out, pt, UpdateCallbackWrapper(callback));
}

void GradientMachine::loadParameters(const std::string& path) {
  m->machine->loadParameters(path);
}

size_t GradientMachine::getParameterSize() const {
  return m->machine->getParameters().size();
}

Parameter* GradientMachine::getParameter(size_t i) throw(RangeError) {
  auto params = m->machine->getParameters();
  if (i < params.size()) {
    return Parameter::createFromSharedPtr(&m->machine->getParameters()[i]);
  } else {
    throw RangeError();
  }
}

void GradientMachine::randParameters() { m->machine->randParameters(); }

Matrix* GradientMachine::getLayerOutput(const std::string& layerName) const
136
    throw(UnsupportError) {
Z
zhangjinchao01 已提交
137 138 139 140 141 142 143 144 145 146
  auto nn = std::dynamic_pointer_cast<paddle::NeuralNetwork>(m->machine);
  if (nn) {
    auto mat = nn->getLayerOutput(layerName);
    return Matrix::createByPaddleMatrixPtr(&mat);
  } else {
    throw UnsupportError();
  }
}

SequenceGenerator* GradientMachine::asSequenceGenerator(
147 148 149 150 151
    const std::vector<std::string>& dict,
    size_t begin_id,
    size_t end_id,
    size_t max_length,
    size_t beam_size) {
Z
zhangjinchao01 已提交
152 153 154 155 156 157 158 159 160
  SequenceGenerator* r =
      SequenceGenerator::createByGradientMachineSharedPtr(&m->machine);
  r->setDict(dict);
  r->setBos(begin_id);
  r->setEos(end_id);
  r->setMaxLength(max_length);
  r->setBeamSize(beam_size);
  return r;
}