test_helper.h 9.5 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16
#pragma once

#include <map>
17
#include <memory>
18 19 20
#include <random>
#include <string>
#include <vector>
21

Y
Yi Wang 已提交
22 23
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/inference/io.h"
24
#include "paddle/fluid/platform/errors.h"
P
peizhilin 已提交
25
#include "paddle/fluid/platform/port.h"
26
#include "paddle/fluid/platform/profiler.h"
27

28 29
DECLARE_bool(use_mkldnn);

30
template <typename T>
31
void SetupTensor(paddle::framework::LoDTensor* input,
32
                 paddle::framework::DDim dims, T lower, T upper) {
33 34
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
35 36 37 38 39
  std::uniform_real_distribution<double> uniform_dist(0, 1);

  T* input_ptr = input->mutable_data<T>(dims, paddle::platform::CPUPlace());
  for (int i = 0; i < input->numel(); ++i) {
    input_ptr[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
40 41 42
  }
}

43
template <typename T>
44 45
void SetupTensor(paddle::framework::LoDTensor* input,
                 paddle::framework::DDim dims, const std::vector<T>& data) {
46
  CHECK_EQ(paddle::framework::product(dims), static_cast<int64_t>(data.size()));
47 48
  T* input_ptr = input->mutable_data<T>(dims, paddle::platform::CPUPlace());
  memcpy(input_ptr, data.data(), input->numel() * sizeof(T));
49 50
}

51
template <typename T>
52 53 54
void SetupLoDTensor(paddle::framework::LoDTensor* input,
                    const paddle::framework::LoD& lod, T lower, T upper) {
  input->set_lod(lod);
55
  int dim = lod[0][lod[0].size() - 1];
56 57 58 59
  SetupTensor<T>(input, {dim, 1}, lower, upper);
}

template <typename T>
60
void SetupLoDTensor(paddle::framework::LoDTensor* input,
61
                    paddle::framework::DDim dims,
62 63
                    const paddle::framework::LoD lod,
                    const std::vector<T>& data) {
64
  const size_t level = lod.size() - 1;
65
  CHECK_EQ(dims[0], static_cast<int64_t>((lod[level]).back()));
66
  input->set_lod(lod);
67
  SetupTensor<T>(input, dims, data);
68 69 70
}

template <typename T>
71 72
void CheckError(const paddle::framework::LoDTensor& output1,
                const paddle::framework::LoDTensor& output2) {
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
  // Check lod information
  EXPECT_EQ(output1.lod(), output2.lod());

  EXPECT_EQ(output1.dims(), output2.dims());
  EXPECT_EQ(output1.numel(), output2.numel());

  T err = static_cast<T>(0);
  if (typeid(T) == typeid(float)) {
    err = 1E-3;
  } else if (typeid(T) == typeid(double)) {
    err = 1E-6;
  } else {
    err = 0;
  }

  size_t count = 0;
  for (int64_t i = 0; i < output1.numel(); ++i) {
    if (fabs(output1.data<T>()[i] - output2.data<T>()[i]) > err) {
      count++;
    }
  }
94
  EXPECT_EQ(count, 0U) << "There are " << count << " different elements.";
95 96
}

97 98
std::unique_ptr<paddle::framework::ProgramDesc> InitProgram(
    paddle::framework::Executor* executor, paddle::framework::Scope* scope,
T
Tao Luo 已提交
99 100 101
    const std::string& dirname, const bool is_combined = false,
    const std::string& prog_filename = "__model_combined__",
    const std::string& param_filename = "__params_combined__") {
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
  std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
  if (is_combined) {
    // All parameters are saved in a single file.
    // Hard-coding the file names of program and parameters in unittest.
    // The file names should be consistent with that used in Python API
    //  `fluid.io.save_inference_model`.
    inference_program =
        paddle::inference::Load(executor, scope, dirname + "/" + prog_filename,
                                dirname + "/" + param_filename);
  } else {
    // Parameters are saved in separate files sited in the specified
    // `dirname`.
    inference_program = paddle::inference::Load(executor, scope, dirname);
  }
  return inference_program;
}

std::vector<std::vector<int64_t>> GetFeedTargetShapes(
T
Tao Luo 已提交
120 121 122
    const std::string& dirname, const bool is_combined = false,
    const std::string& prog_filename = "__model_combined__",
    const std::string& param_filename = "__params_combined__") {
123 124 125 126
  auto place = paddle::platform::CPUPlace();
  auto executor = paddle::framework::Executor(place);
  auto* scope = new paddle::framework::Scope();

T
Tao Luo 已提交
127 128
  auto inference_program = InitProgram(&executor, scope, dirname, is_combined,
                                       prog_filename, param_filename);
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
  auto& global_block = inference_program->Block(0);

  const std::vector<std::string>& feed_target_names =
      inference_program->GetFeedTargetNames();
  std::vector<std::vector<int64_t>> feed_target_shapes;
  for (size_t i = 0; i < feed_target_names.size(); ++i) {
    auto* var = global_block.FindVar(feed_target_names[i]);
    std::vector<int64_t> var_shape = var->GetShape();
    feed_target_shapes.push_back(var_shape);
  }

  delete scope;
  return feed_target_shapes;
}

144
template <typename Place, bool CreateVars = true, bool PrepareContext = false>
145 146
void TestInference(const std::string& dirname,
                   const std::vector<paddle::framework::LoDTensor*>& cpu_feeds,
147
                   const std::vector<paddle::framework::FetchType*>& cpu_fetchs,
148
                   const int repeat = 1, const bool is_combined = false) {
149
  // 1. Define place, executor, scope
150 151 152 153
  auto place = Place();
  auto executor = paddle::framework::Executor(place);
  auto* scope = new paddle::framework::Scope();

154 155 156 157 158 159
  // Profile the performance
  paddle::platform::ProfilerState state;
  if (paddle::platform::is_cpu_place(place)) {
    state = paddle::platform::ProfilerState::kCPU;
  } else {
#ifdef PADDLE_WITH_CUDA
160
    state = paddle::platform::ProfilerState::kAll;
161 162 163 164
    // The default device_id of paddle::platform::CUDAPlace is 0.
    // Users can get the device_id using:
    //   int device_id = place.GetDeviceId();
    paddle::platform::SetDeviceId(0);
Q
QI JUN 已提交
165
#else
166 167
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "'CUDAPlace' is not supported in CPU only device."));
168 169 170
#endif
  }

171 172
  // 2. Initialize the inference_program and load parameters
  std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
173 174 175

  // Enable the profiler
  paddle::platform::EnableProfiler(state);
176
  {
177
    paddle::platform::RecordEvent record_event("init_program");
178
    inference_program = InitProgram(&executor, scope, dirname, is_combined);
179
  }
X
Xin Pan 已提交
180

181 182
  // Disable the profiler and print the timing information
  paddle::platform::DisableProfiler(paddle::platform::EventSortingKey::kDefault,
183
                                    "load_program_profiler");
184
  paddle::platform::ResetProfiler();
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

  // 3. Get the feed_target_names and fetch_target_names
  const std::vector<std::string>& feed_target_names =
      inference_program->GetFeedTargetNames();
  const std::vector<std::string>& fetch_target_names =
      inference_program->GetFetchTargetNames();

  // 4. Prepare inputs: set up maps for feed targets
  std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;
  for (size_t i = 0; i < feed_target_names.size(); ++i) {
    // Please make sure that cpu_feeds[i] is right for feed_target_names[i]
    feed_targets[feed_target_names[i]] = cpu_feeds[i];
  }

  // 5. Define Tensor to get the outputs: set up maps for fetch targets
200
  std::map<std::string, paddle::framework::FetchType*> fetch_targets;
201 202 203 204
  for (size_t i = 0; i < fetch_target_names.size(); ++i) {
    fetch_targets[fetch_target_names[i]] = cpu_fetchs[i];
  }

205 206 207 208
  // 6. If export Flags_use_mkldnn=True, use mkldnn related ops.
  if (FLAGS_use_mkldnn) executor.EnableMKLDNN(*inference_program);

  // 7. Run the inference program
209
  {
210 211 212 213
    if (!CreateVars) {
      // If users don't want to create and destroy variables every time they
      // run, they need to set `create_vars` to false and manually call
      // `CreateVariables` before running.
L
Liu Yiqun 已提交
214
      executor.CreateVariables(*inference_program, scope, 0);
215 216
    }

217
    // Ignore the profiling results of the first run
218
    std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx;
T
tensor-tang 已提交
219
    bool CreateLocalScope = CreateVars;
220 221
    if (PrepareContext) {
      ctx = executor.Prepare(*inference_program, 0);
222
      executor.RunPreparedContext(ctx.get(), scope, &feed_targets,
T
tensor-tang 已提交
223
                                  &fetch_targets, CreateLocalScope, CreateVars);
224
    } else {
225
      executor.Run(*inference_program, scope, &feed_targets, &fetch_targets,
T
tensor-tang 已提交
226
                   CreateLocalScope, CreateVars);
227
    }
228 229 230 231

    // Enable the profiler
    paddle::platform::EnableProfiler(state);

232 233
    // Run repeat times to profile the performance
    for (int i = 0; i < repeat; ++i) {
234
      paddle::platform::RecordEvent record_event("run_inference");
235

236
      if (PrepareContext) {
L
Liu Yiqun 已提交
237
        // Note: if you change the inference_program, you need to call
238
        // executor.Prepare() again to get a new ExecutorPrepareContext.
239
        executor.RunPreparedContext(ctx.get(), scope, &feed_targets,
T
tensor-tang 已提交
240 241
                                    &fetch_targets, CreateLocalScope,
                                    CreateVars);
242
      } else {
243
        executor.Run(*inference_program, scope, &feed_targets, &fetch_targets,
T
tensor-tang 已提交
244
                     CreateLocalScope, CreateVars);
245
      }
246 247
    }

248 249
    // Disable the profiler and print the timing information
    paddle::platform::DisableProfiler(
D
daminglu 已提交
250
        paddle::platform::EventSortingKey::kDefault, "run_inference_profiler");
251 252
    paddle::platform::ResetProfiler();
  }
253 254 255

  delete scope;
}