test_multinomial_op.py 11.6 KB
Newer Older
P
pangyoki 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import paddle
import paddle.fluid as fluid
20
from paddle.fluid import core
P
pangyoki 已提交
21 22
from op_test import OpTest
import numpy as np
P
phlrain 已提交
23
from paddle.fluid.framework import _test_eager_guard
24
import os
P
pangyoki 已提交
25 26


P
pangyoki 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
def sample_output_one_dimension(out, dim):
    # count numbers of different categories
    sample_prob = np.zeros(dim).astype("float32")
    sample_index_prob = np.unique(out, return_counts=True)
    sample_prob[sample_index_prob[0]] = sample_index_prob[1]
    sample_prob /= sample_prob.sum()
    return sample_prob


def sample_output_two_dimension(out, shape):
    num_dist = shape[0]
    out_list = np.split(out, num_dist, axis=0)
    sample_prob = np.zeros(shape).astype("float32")
    for i in range(num_dist):
        sample_index_prob = np.unique(out_list[i], return_counts=True)
        sample_prob[i][sample_index_prob[0]] = sample_index_prob[1]
    sample_prob /= sample_prob.sum(axis=-1, keepdims=True)
    return sample_prob


P
pangyoki 已提交
47 48
class TestMultinomialOp(OpTest):
    def setUp(self):
49
        paddle.enable_static()
P
pangyoki 已提交
50
        self.op_type = "multinomial"
P
phlrain 已提交
51
        self.python_api = paddle.multinomial
P
pangyoki 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64
        self.init_data()
        self.inputs = {"X": self.input_np}

    def init_data(self):
        # input probability is a vector, and replacement is True
        self.input_np = np.random.rand(4)
        self.outputs = {"Out": np.zeros(100000).astype("int64")}
        self.attrs = {"num_samples": 100000, "replacement": True}

    def test_check_output(self):
        self.check_output_customized(self.verify_output)

    def sample_output(self, out):
P
pangyoki 已提交
65
        return sample_output_one_dimension(out, 4)
P
pangyoki 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

    def verify_output(self, outs):
        # normalize the input to get the probability
        prob = self.input_np / self.input_np.sum(axis=-1, keepdims=True)
        sample_prob = self.sample_output(np.array(outs[0]))
        self.assertTrue(
            np.allclose(
                sample_prob, prob, rtol=0, atol=0.01),
            "sample_prob: " + str(sample_prob) + "\nprob: " + str(prob))


class TestMultinomialOp2(TestMultinomialOp):
    def init_data(self):
        # input probability is a matrix
        self.input_np = np.random.rand(3, 4)
        self.outputs = {"Out": np.zeros((3, 100000)).astype("int64")}
        self.attrs = {"num_samples": 100000, "replacement": True}

    def sample_output(self, out):
P
pangyoki 已提交
85
        return sample_output_two_dimension(out, [3, 4])
P
pangyoki 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106


class TestMultinomialOp3(TestMultinomialOp):
    def init_data(self):
        # replacement is False. number of samples must be less than number of categories.
        self.input_np = np.random.rand(1000)
        self.outputs = {"Out": np.zeros(100).astype("int64")}
        self.attrs = {"num_samples": 100, "replacement": False}

    def verify_output(self, outs):
        out = np.array(outs[0])
        unique_out = np.unique(out)
        self.assertEqual(
            len(unique_out), 100,
            "replacement is False. categories can't be sampled repeatedly")


class TestMultinomialApi(unittest.TestCase):
    def test_dygraph(self):
        # input probability is a vector, and replacement is True
        paddle.disable_static()
P
pangyoki 已提交
107 108
        x_numpy = np.random.rand(4)
        x = paddle.to_tensor(x_numpy)
P
pangyoki 已提交
109 110 111
        out = paddle.multinomial(x, num_samples=100000, replacement=True)
        paddle.enable_static()

P
pangyoki 已提交
112
        sample_prob = sample_output_one_dimension(out.numpy(), 4)
P
pangyoki 已提交
113 114 115 116 117 118
        prob = x_numpy / x_numpy.sum(axis=-1, keepdims=True)
        self.assertTrue(
            np.allclose(
                sample_prob, prob, rtol=0, atol=0.01),
            "sample_prob: " + str(sample_prob) + "\nprob: " + str(prob))

P
phlrain 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    def test_eager(self):
        # input probability is a vector, and replacement is True
        paddle.disable_static()
        with _test_eager_guard():
            x_numpy = np.random.rand(4)
            x = paddle.to_tensor(x_numpy)
            out = paddle.multinomial(x, num_samples=100000, replacement=True)

            sample_prob = sample_output_one_dimension(out.numpy(), 4)
            prob = x_numpy / x_numpy.sum(axis=-1, keepdims=True)
            self.assertTrue(
                np.allclose(
                    sample_prob, prob, rtol=0, atol=0.01),
                "sample_prob: " + str(sample_prob) + "\nprob: " + str(prob))
        paddle.enable_static()

P
pangyoki 已提交
135 136 137
    def test_dygraph2(self):
        # input probability is a matrix, and replacement is True
        paddle.disable_static()
P
pangyoki 已提交
138 139
        x_numpy = np.random.rand(3, 4)
        x = paddle.to_tensor(x_numpy)
P
pangyoki 已提交
140 141
        out = paddle.multinomial(x, num_samples=100000, replacement=True)

P
pangyoki 已提交
142
        sample_prob = sample_output_two_dimension(out.numpy(), [3, 4])
P
pangyoki 已提交
143 144 145 146 147 148 149
        prob = x_numpy / x_numpy.sum(axis=-1, keepdims=True)
        self.assertTrue(
            np.allclose(
                sample_prob, prob, rtol=0, atol=0.01),
            "sample_prob: " + str(sample_prob) + "\nprob: " + str(prob))
        paddle.enable_static()

P
phlrain 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    def test_eager2(self):
        # input probability is a matrix, and replacement is True
        paddle.disable_static()
        with _test_eager_guard():
            x_numpy = np.random.rand(3, 4)
            x = paddle.to_tensor(x_numpy)
            out = paddle.multinomial(x, num_samples=100000, replacement=True)

            sample_prob = sample_output_two_dimension(out.numpy(), [3, 4])
            prob = x_numpy / x_numpy.sum(axis=-1, keepdims=True)
            self.assertTrue(
                np.allclose(
                    sample_prob, prob, rtol=0, atol=0.01),
                "sample_prob: " + str(sample_prob) + "\nprob: " + str(prob))
        paddle.enable_static()

P
pangyoki 已提交
166 167 168
    def test_dygraph3(self):
        # replacement is False. number of samples must be less than number of categories.
        paddle.disable_static()
P
pangyoki 已提交
169 170
        x_numpy = np.random.rand(1000)
        x = paddle.to_tensor(x_numpy)
P
pangyoki 已提交
171 172 173 174 175 176 177 178
        out = paddle.multinomial(x, num_samples=100, replacement=False)

        unique_out = np.unique(out.numpy())
        self.assertEqual(
            len(unique_out), 100,
            "replacement is False. categories can't be sampled repeatedly")
        paddle.enable_static()

P
pangyoki 已提交
179 180 181 182 183 184 185 186
    def test_dygraph4(self):
        paddle.disable_static()
        logits = -1 * paddle.ones([2800])
        # Categorical.sample API will call multinomial op with replacement=True
        cat = paddle.distribution.Categorical(logits.exp())
        cat.sample([1])
        paddle.enable_static()

P
pangyoki 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    def test_static(self):
        paddle.enable_static()
        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            x = fluid.data('x', shape=[4], dtype='float32')
            out = paddle.multinomial(x, num_samples=100000, replacement=True)

            place = fluid.CPUPlace()
            if fluid.core.is_compiled_with_cuda():
                place = fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

        exe.run(startup_program)
        x_np = np.random.rand(4).astype('float32')
        out = exe.run(train_program, feed={'x': x_np}, fetch_list=[out])

P
pangyoki 已提交
204
        sample_prob = sample_output_one_dimension(out, 4)
P
pangyoki 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
        prob = x_np / x_np.sum(axis=-1, keepdims=True)
        self.assertTrue(
            np.allclose(
                sample_prob, prob, rtol=0, atol=0.01),
            "sample_prob: " + str(sample_prob) + "\nprob: " + str(prob))


class TestMultinomialAlias(unittest.TestCase):
    def test_alias(self):
        paddle.disable_static()
        x = paddle.rand([4])
        paddle.multinomial(x, num_samples=10, replacement=True)
        paddle.tensor.multinomial(x, num_samples=10, replacement=True)
        paddle.tensor.random.multinomial(x, num_samples=10, replacement=True)


221 222 223 224 225 226 227 228 229
class TestMultinomialError(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()

    def test_num_sample(self):
        def test_num_sample_less_than_0():
            x = paddle.rand([4])
            paddle.multinomial(x, num_samples=-2)

230
        self.assertRaises(ValueError, test_num_sample_less_than_0)
231 232 233 234 235 236

    def test_replacement_False(self):
        def test_samples_larger_than_categories():
            x = paddle.rand([4])
            paddle.multinomial(x, num_samples=5, replacement=False)

237
        self.assertRaises(ValueError, test_samples_larger_than_categories)
238 239 240 241 242 243

    def test_input_probs_dim(self):
        def test_dim_larger_than_2():
            x = paddle.rand([2, 3, 3])
            paddle.multinomial(x)

244
        self.assertRaises(ValueError, test_dim_larger_than_2)
245 246 247 248 249 250

        def test_dim_less_than_1():
            x_np = np.random.random([])
            x = paddle.to_tensor(x_np)
            paddle.multinomial(x)

251
        self.assertRaises(ValueError, test_dim_less_than_1)
252 253


254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
class TestRandomValue(unittest.TestCase):
    def test_fixed_random_number(self):
        # Test GPU Fixed random number, which is generated by 'curandStatePhilox4_32_10_t'
        if not paddle.is_compiled_with_cuda():
            return

        # Different GPU generatte different random value. Only test V100 here.
        if not "V100" in paddle.device.cuda.get_device_name():
            return

        if os.getenv("FLAGS_use_curand", None) in ('0', 'False', None):
            return

        print("Test Fixed Random number on V100 GPU------>")
        paddle.disable_static()
        paddle.set_device('gpu')
        paddle.seed(100)

        x = paddle.randint(0, 100, [1024, 10000]).astype('float32')
        y = paddle.multinomial(x, 1, replacement=False).numpy()
        self.assertEqual(np.sum(y), 5187793)
        self.assertEqual(np.mean(y), 5066.2041015625)
        expect = [9982, 1655, 4741, 1323, 9319, 3298, 6473, 7477, 2507, 2628]
        self.assertTrue(np.array_equal(y[100:110, :].flatten(), expect))

        y = paddle.multinomial(x, 5000, replacement=False).numpy()
        self.assertEqual(np.sum(y), 25603962316)
        self.assertEqual(np.mean(y), 5000.77388984375)
        expect = [7300, 6055, 8714, 5401, 7360, 161, 5035, 7002, 6788, 2916]
        self.assertTrue(np.array_equal(y[100, 1000:1010], expect))

        y = paddle.multinomial(x, 5000, replacement=False).numpy()
        self.assertEqual(np.sum(y), 25592855710)
        self.assertEqual(np.mean(y), 4998.604630859375)
        expect = [5700, 6567, 4399, 5688, 7472, 545, 6894, 526, 2124, 385]
        self.assertTrue(np.array_equal(y[300, 3000:3010], expect))

        y = paddle.multinomial(x, 20000, replacement=True).numpy()
        self.assertEqual(np.sum(y), 102371362581)
        self.assertEqual(np.mean(y), 4998.60168852539)
        self.assertEqual(np.std(y), 2886.316308500771)
        expect = [7630, 8235, 8445, 3275, 5580, 4591, 1331, 342, 1662, 7156]
        self.assertTrue(np.array_equal(y[100, 0:10], expect))

        y = paddle.multinomial(x, 20000, replacement=True).numpy()
        self.assertEqual(np.sum(y), 102400672117)
        self.assertEqual(np.mean(y), 5000.032818212891)
        self.assertEqual(np.std(y), 2886.913426124017)
        expect = [4159, 7849, 9305, 5759, 4422, 122, 345, 2897, 5200, 5911]
        self.assertTrue(np.array_equal(y[100, 0:10], expect))

        paddle.enable_static()


P
pangyoki 已提交
308
if __name__ == "__main__":
P
phlrain 已提交
309
    paddle.enable_static()
P
pangyoki 已提交
310
    unittest.main()