stft_op.h 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"

#include "paddle/fluid/operators/frame_op.h"
#include "paddle/fluid/operators/spectral_op.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class StftKernel : public framework::OpKernel<T> {
 public:
  /*
    Batch Signals (N, T) -> Frames (N, n_fft, num_frames) -> FFTR2C -> (N,
    n_fft/2 + 1, num_frames) or (N, n_fft, num_frames)
  */
  void Compute(const framework::ExecutionContext& ctx) const override {
    using C = paddle::platform::complex<T>;
    const Tensor* x = ctx.Input<Tensor>("X");
    Tensor* out = ctx.Output<Tensor>("Out");
    out->mutable_data<C>(ctx.GetPlace());

    const size_t x_rank = x->dims().size();
    const size_t out_rank = out->dims().size();

    const int n_fft = ctx.Attr<int>("n_fft");
    const int hop_length = ctx.Attr<int>("hop_length");
    const bool normalized = ctx.Attr<bool>("normalized");
    const bool onesided = ctx.Attr<bool>("onesided");

    const int n_frames = out->dims()[out_rank - 1];
    const int seq_length = x->dims()[x_rank - 1];

    auto& dev_ctx = ctx.device_context<DeviceContext>();

    std::vector<int64_t> axes = {1};

    // Frame
    Tensor frames;
    framework::DDim frames_dims(out->dims());
    frames_dims.at(axes.back()) = n_fft;
    frames.mutable_data<T>(frames_dims, ctx.GetPlace());
    FrameFunctor<DeviceContext, T>()(dev_ctx, x, &frames, seq_length, n_fft,
                                     n_frames, hop_length, /*is_grad*/ false);

    // FFTR2C
    FFTNormMode normalization;
    if (normalized) {
      normalization = get_norm_from_string("ortho", true);
    } else {
      normalization = get_norm_from_string("backward", true);
    }
    FFTR2CFunctor<DeviceContext, T, C> fft_r2c_func;

    if (onesided) {
      fft_r2c_func(dev_ctx, &frames, out, axes, normalization, true);
    } else {
      framework::DDim onesided_dims(out->dims());
      const int64_t onesided_axis_size = out->dims().at(axes.back()) / 2 + 1;
      onesided_dims.at(axes.back()) = onesided_axis_size;
      Tensor onesided_out;
      onesided_out.mutable_data<C>(onesided_dims, ctx.GetPlace());
      fft_r2c_func(dev_ctx, &frames, &onesided_out, axes, normalization, true);
      fill_conj<DeviceContext, C>(dev_ctx, &onesided_out, out, axes);
    }
  }
};

template <typename DeviceContext, typename T>
class StftGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using C = paddle::platform::complex<T>;
    auto& dev_ctx = ctx.device_context<DeviceContext>();

    const auto* dy = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    dx->mutable_data<T>(ctx.GetPlace());

    const size_t dy_rank = dy->dims().size();
    const size_t dx_rank = dx->dims().size();

    const int n_fft = ctx.Attr<int>("n_fft");
    const int hop_length = ctx.Attr<int>("hop_length");
    const bool normalized = ctx.Attr<bool>("normalized");
    const bool onesided = ctx.Attr<bool>("onesided");
    const int n_frames = dy->dims()[dy_rank - 1];
    const int seq_length = dx->dims()[dx_rank - 1];

    std::vector<int64_t> axes = {1};
    Tensor d_frames;
    framework::DDim d_frames_dims(dy->dims());
    d_frames_dims.at(axes.back()) = n_fft;
    d_frames.mutable_data<T>(d_frames_dims, ctx.GetPlace());

    Tensor complex_d_frames;
    complex_d_frames.mutable_data<C>(d_frames_dims, ctx.GetPlace());

    // dy -> d_frames
    FFTNormMode normalization;
    if (normalized) {
      normalization = get_norm_from_string("ortho", true);
    } else {
      normalization = get_norm_from_string("backward", true);
    }
    FFTC2CFunctor<DeviceContext, C, C> fft_c2c_func;

    if (!onesided) {
      fft_c2c_func(dev_ctx, dy, &complex_d_frames, axes, normalization, false);
    } else {
      Tensor full_dy;
      full_dy.mutable_data<C>(d_frames_dims, ctx.GetPlace());
      auto zero_length = static_cast<int>(full_dy.dims().at(axes.back()) -
                                          dy->dims().at(axes.back()));
      auto rank = dy->dims().size();

      std::vector<int> pads(rank * 2, 0);
      pads[axes.back() * 2 + 1] = zero_length;

      phi::funcs::PaddingFunctor<DeviceContext, C>(
          rank, ctx.template device_context<DeviceContext>(), pads,
          static_cast<C>(0), *dy, &full_dy);
      fft_c2c_func(dev_ctx, &full_dy, &complex_d_frames, axes, normalization,
                   false);
    }
    framework::TransComplexToReal(
        framework::TransToProtoVarType(d_frames.dtype()),
        framework::TransToProtoVarType(complex_d_frames.dtype()),
        complex_d_frames, &d_frames);

    // d_frames -> dx
    FrameFunctor<DeviceContext, T>()(dev_ctx, &d_frames, dx, seq_length, n_fft,
                                     n_frames, hop_length, /*is_grad*/ true);
  }
};

}  // namespace operators
}  // namespace paddle