grad_node_info.cc 15.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/eager/grad_node_info.h"
16
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
17
#include "paddle/fluid/eager/autograd_meta.h"
18 19
#include "paddle/fluid/eager/utils.h"

20 21
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/dense_tensor.h"
22

23 24 25
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/data_type_transform.h"
26
#include "paddle/fluid/framework/var_type.h"
27

28 29 30 31 32 33
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/errors.h"

#include "glog/logging.h"

/**
34
 * Implementation of GradNodeBase, Edge and GradTensorHolder.
35 36 37 38
**/
namespace egr {

GradNodeBase::GradNodeBase(size_t bwd_in_slot_num, size_t bwd_out_slot_num) {
J
Jiabin Yang 已提交
39
  VLOG(6) << "Construct GradNodeBase";
40 41 42 43 44
  bwd_in_meta_.resize(bwd_in_slot_num);
  bwd_out_meta_.resize(bwd_out_slot_num);
  adj_edges_.resize(bwd_out_slot_num);
}

45 46 47 48 49 50 51
void GradNodeBase::AddEdges(std::vector<AutogradMeta*>* metas, size_t slot_id) {
  PADDLE_ENFORCE_LT(
      slot_id, adj_edges_.size(),
      paddle::platform::errors::InvalidArgument(
          "Given slot id is out of range of adj_edges outter size, "
          "adj_edges is designed to has the same size of grad "
          "inputs's slot num."));
52 53 54

  for (size_t i = 0; i < metas->size(); i++) {
    const auto& meta = (*metas)[i];
55 56 57
    // adj_edges has as same rank as fwd inputs, and record it's output rank
    // from
    // its pre-ops
58
    if (meta && !meta->StopGradient()) {
59
      auto node = meta->GetMutableGradNode();
60
      if (!node || !node.get()) {
61
        meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
62
      }
63 64 65

      adj_edges_[slot_id].emplace_back(meta->GetMutableGradNode(),
                                       meta->OutRankInfo());
J
Jiabin Yang 已提交
66 67
    } else {
      adj_edges_[slot_id].emplace_back();
68
    }
69 70 71
  }
}

72
void GradNodeBase::AddEdges(AutogradMeta* meta, size_t slot_id) {
73 74 75 76 77 78
  PADDLE_ENFORCE_LT(
      slot_id, adj_edges_.size(),
      paddle::platform::errors::InvalidArgument(
          "Given slot id is out of range of adj_edges outter size, "
          "adj_edges is designed to has the same size of grad "
          "inputs's slot num."));
79

80
  if (meta && !meta->StopGradient()) {
81
    auto node = meta->GetMutableGradNode();
82
    if (!node || !node.get()) {
83
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
84
    }
85 86 87 88 89
    VLOG(6) << "Add Edges for slot: " << slot_id << ", the Edge is from "
            << this->name() << " to " << meta->GetMutableGradNode()->name();

    adj_edges_[slot_id].emplace_back(meta->GetMutableGradNode(),
                                     meta->OutRankInfo());
J
Jiabin Yang 已提交
90 91
  } else {
    adj_edges_[slot_id].emplace_back();
92
  }
93 94
}

95
const std::vector<std::vector<GradSlotMeta>>& GradNodeBase::InputMeta() const {
96 97 98
  return bwd_in_meta_;
}

99
const std::vector<std::vector<GradSlotMeta>>& GradNodeBase::OutputMeta() const {
100 101 102
  return bwd_out_meta_;
}

103
void GradNodeBase::SetGradInMeta(const paddle::experimental::Tensor& fwd_out,
104
                                 size_t slot_rank) {
105
  VLOG(6) << "Set GradSlotMeta for Grad Inputs";
106
  auto* fwd_out_meta = egr::EagerUtils::nullable_autograd_meta(fwd_out);
107 108 109 110 111 112
  PADDLE_ENFORCE_LE(
      slot_rank, (bwd_in_meta_.size() - 1),
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_in_meta_ size, since "
          "bwd_in_meta_ is designed to hold as same num as backward "
          "inputs."));
113 114 115 116 117 118 119 120
  auto& metas = bwd_in_meta_.at(slot_rank);
  if (metas.size() == 0) {
    metas.resize(1);
  }

  auto& meta = metas[0];
  meta.SetStopGradient(fwd_out_meta->StopGradient());

121 122 123 124 125 126
  if (!fwd_out.is_initialized()) {
    VLOG(6)
        << "Skip Configuring GradSlotMeta for uninitialized GradInput Tensor";
    return;
  }

127 128 129 130 131 132 133 134 135 136 137
  // Record TensorMeta
  if (phi::DenseTensor::classof(fwd_out.impl().get())) {
    // Only Copy Meta
    phi::DenseTensor* dense_tensor =
        static_cast<phi::DenseTensor*>(fwd_out.impl().get());

    PADDLE_ENFORCE_NE(
        dense_tensor->meta().dtype, phi::DataType::UNDEFINED,
        paddle::platform::errors::Fatal(
            "Attempting to copy DenseTensorMeta with phi::DataType::UNDEFINED,"
            "which is illegal."));
138

139
    meta.SetTensorMeta(dense_tensor->meta());
140
    meta.SetPlace(fwd_out.inner_place());
141 142 143 144

    if (paddle::framework::IsComplexType(
            paddle::framework::TransToProtoVarType(dense_tensor->type()))) {
      need_complex_to_real_ = true;
145
    }
146 147 148
  } else {
    VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta with "
               "non-DenseTensor argument.";
149 150 151
  }
}

152 153 154
void GradNodeBase::SetGradInMeta(
    const std::vector<paddle::experimental::Tensor>& fwd_out,
    size_t slot_rank) {
155
  VLOG(6) << "Set GradSlotMeta for Grad Inputs";
156
  size_t slot_size = fwd_out.size();
157 158 159 160 161 162
  PADDLE_ENFORCE_LE(
      slot_rank, (bwd_in_meta_.size() - 1),
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_in_meta_ size, since "
          "bwd_in_meta_ is designed to hold as same num as backward "
          "inputs."));
163
  auto& metas = bwd_in_meta_.at(slot_rank);
164
  // Init stop gradient vector before use to avoid push back
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
  if (metas.size() < slot_size) {
    VLOG(7) << "Init bwd_in_meta_ with slot rank: " << slot_rank;
    metas.resize(slot_size);
  }
  for (size_t i = 0; i < slot_size; i++) {
    auto& meta = metas[i];
    const auto& fwd_out_tensor = fwd_out[i];
    auto* fwd_out_meta =
        egr::EagerUtils::nullable_autograd_meta(fwd_out_tensor);
    PADDLE_ENFORCE_NOT_NULL(fwd_out_meta,
                            paddle::platform::errors::PreconditionNotMet(
                                "Bwd_in_meta should only be called while "
                                "autograd_meta is not null. If you got this "
                                "error, it indicates bugs in framework."));
    if (fwd_out_meta->StopGradient()) {
      // Set Stop Gradient only when its true or non-initialized autograd_meta,
      // since all default value is false.
      meta.SetStopGradient(fwd_out_meta->StopGradient());
    }

185 186 187 188 189 190
    if (!fwd_out_tensor.is_initialized()) {
      VLOG(6)
          << "Skip Configuring GradSlotMeta for uninitialized GradInput Tensor";
      return;
    }

191 192 193 194 195 196 197 198 199 200 201 202
    // Record TensorMeta
    if (phi::DenseTensor::classof(fwd_out_tensor.impl().get())) {
      // Only Copy Meta
      phi::DenseTensor* dense_tensor =
          static_cast<phi::DenseTensor*>(fwd_out_tensor.impl().get());

      PADDLE_ENFORCE_NE(
          dense_tensor->meta().dtype, phi::DataType::UNDEFINED,
          paddle::platform::errors::Fatal("Attempting to copy DenseTensorMeta "
                                          "with phi::DataType::UNDEFINED,"
                                          "which is illegal."));
      meta.SetTensorMeta(dense_tensor->meta());
203 204
      meta.SetPlace(fwd_out_tensor.inner_place());

205 206 207 208 209 210 211 212 213
      if (paddle::framework::IsComplexType(
              paddle::framework::TransToProtoVarType(dense_tensor->type()))) {
        need_complex_to_real_ = true;
      }
    } else {
      VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta "
                 "with non-DenseTensor argument.";
    }
  }
214 215
}

216
void GradNodeBase::SetGradOutMeta(const paddle::experimental::Tensor& fwd_in,
217
                                  size_t slot_rank) {
218
  auto* fwd_in_meta = egr::EagerUtils::nullable_autograd_meta(fwd_in);
219
  PADDLE_ENFORCE_LE(
220
      (slot_rank + 1), bwd_out_meta_.size(),
221 222 223 224
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_out_meta_ size, "
          "since bwd_out_meta_ is designed to hold as same num as "
          "backward outputs."));
225
  auto& metas = bwd_out_meta_.at(slot_rank);
226
  // Init stop gradient vector before use to avoid push back
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
  if (metas.size() == 0) {
    metas.resize(1);
  }
  auto& meta = metas[0];
  if (fwd_in_meta) {
    meta.SetStopGradient(fwd_in_meta->StopGradient());
  } else {
    meta.SetStopGradient(true);
  }

  // Record TensorMeta
  if (fwd_in.impl() && fwd_in.impl().get()) {
    if (phi::DenseTensor::classof(fwd_in.impl().get())) {
      // Only Copy Meta
      phi::DenseTensor* dense_tensor =
          static_cast<phi::DenseTensor*>(fwd_in.impl().get());
      PADDLE_ENFORCE_NE(
          dense_tensor->meta().dtype, phi::DataType::UNDEFINED,
          paddle::platform::errors::Fatal("Attempting to copy DenseTensorMeta "
                                          "with phi::DataType::UNDEFINED,"
                                          "which is illegal."));
      meta.SetTensorMeta(dense_tensor->meta());
249
      meta.SetPlace(fwd_in.inner_place());
250
    }
251 252 253
  } else {
    VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta with "
               "non-DenseTensor argument.";
254 255 256
  }
}

257 258 259
void GradNodeBase::SetGradOutMeta(
    const std::vector<paddle::experimental::Tensor>& fwd_in, size_t slot_rank) {
  size_t slot_size = fwd_in.size();
260
  PADDLE_ENFORCE_LE(
261
      slot_rank, (bwd_out_meta_.size() - 1),
262 263 264 265
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_out_meta_ size, "
          "since bwd_out_meta_ is designed to hold as same num as "
          "backward outputs."));
266
  auto& metas = bwd_out_meta_.at(slot_rank);
267
  // Init stop gradient vector before use to avoid push back
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
  if (metas.size() < slot_size) {
    metas.resize(slot_size);
  }
  for (size_t i = 0; i < slot_size; i++) {
    const auto& fwd_in_tensor = fwd_in[i];
    auto& meta = metas[i];
    auto* fwd_in_meta = egr::EagerUtils::nullable_autograd_meta(fwd_in_tensor);
    if (fwd_in_meta) {
      // Set Stop Gradient only when its true or non-initialized autograd_meta,
      // since all default value is false.
      meta.SetStopGradient(fwd_in_meta->StopGradient());
    }

    // Record TensorMeta
    if (fwd_in_tensor.impl() && fwd_in_tensor.impl().get()) {
      if (phi::DenseTensor::classof(fwd_in_tensor.impl().get())) {
        // Only Copy Meta
        phi::DenseTensor* dense_tensor =
            static_cast<phi::DenseTensor*>(fwd_in_tensor.impl().get());

        PADDLE_ENFORCE_NE(dense_tensor->meta().dtype, phi::DataType::UNDEFINED,
                          paddle::platform::errors::Fatal(
                              "Attempting to copy DenseTensorMeta with "
                              "phi::DataType::UNDEFINED,"
                              "which is illegal."));
        meta.SetTensorMeta(dense_tensor->meta());
294
        meta.SetPlace(fwd_in_tensor.inner_place());
295 296 297 298 299
      }
    } else {
      VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta "
                 "with non-DenseTensor argument.";
    }
300
  }
301 302 303 304 305 306 307 308 309
}

void GradNodeBase::SetDefaultGradInOutMeta() {
  PADDLE_ENFORCE((bwd_out_meta_.size() == 1) && (bwd_in_meta_.size() == 1),
                 paddle::platform::errors::PreconditionNotMet(
                     "We can only support 1 input and 1 output in default grad "
                     "meta setter, other size of inputs and outputs should "
                     "create with Setter and Getters"));
  // Default stop_gradient is false and slot id is 0, slot size is 1;
310 311
  bwd_out_meta_[0].resize(1);
  bwd_in_meta_[0].resize(1);
312 313
}

314 315 316 317 318
int64_t GradNodeBase::RegisterGradientHook(
    size_t slot_id, size_t rank, std::shared_ptr<egr::TensorHook>&& hook) {
  gradient_hooks_.emplace(next_hook_id_,
                          std::make_tuple(slot_id, rank, std::move(hook)));
  return next_hook_id_++;
319 320
}

321 322 323 324
const std::vector<std::vector<Edge>>& GradNodeBase::GetEdges() const {
  return adj_edges_;
}

325 326 327 328
std::vector<std::vector<paddle::experimental::Tensor>>
GradNodeBase::ApplyGradientHooks(
    const std::vector<std::vector<paddle::experimental::Tensor>>& tensors) {
  std::vector<std::vector<paddle::experimental::Tensor>> outs(tensors.size());
329 330 331 332 333
  for (auto& hook_pair : gradient_hooks_) {
    size_t slot_id = std::get<0>(hook_pair.second);
    size_t rank = std::get<1>(hook_pair.second);

    auto hook = std::get<2>(hook_pair.second);
334 335 336 337 338 339 340 341 342 343 344 345

    PADDLE_ENFORCE(slot_id < tensors.size(),
                   paddle::platform::errors::Fatal(
                       "Slot_id from registered hook should be smaller than "
                       "slot size of grad_tensors"));

    PADDLE_ENFORCE(rank < tensors[slot_id].size(),
                   paddle::platform::errors::Fatal(
                       "rank of slot %d from registered hook should be smaller "
                       "than rank size of grad_tensors",
                       slot_id));

346
    std::vector<paddle::experimental::Tensor>& slot_out = outs[slot_id];
347
    slot_out.resize(tensors[slot_id].size());
348
    paddle::experimental::Tensor& out = slot_out[rank];
349
    if (!out.defined() || !out.initialized()) {
350
      out = (*hook)(tensors[slot_id][rank]);
351
    } else {
352
      // If more than one hook is registered, the input to the next hook func
353
      // should be the output of the previous hook
354
      out = (*hook)(out);
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
    }
  }

  for (size_t i = 0; i < outs.size(); i++) {
    if (outs[i].empty() && (!tensors[i].empty())) {
      outs[i].resize(tensors[i].size());
    }
    // TODO(Jiabin): Optimize this if we only add hook slot by slot
    for (size_t j = 0; j < outs[i].size(); j++) {
      if (!outs[i][j].defined() || !outs[i][j].initialized()) {
        outs[i][j] = tensors[i][j];
      }
    }
  }

  return outs;
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
void GradNodeBase::HandleComplexGradToRealGrad(
    std::vector<std::vector<paddle::experimental::Tensor>>* out_grads) {
  for (size_t slot_id = 0; slot_id < out_grads->size(); slot_id++) {
    const std::vector<paddle::experimental::Tensor>& slot_out_grads =
        (*out_grads)[slot_id];
    for (size_t rank_id = 0; rank_id < slot_out_grads.size(); rank_id++) {
      const GradSlotMeta& slot_meta = bwd_out_meta_[slot_id][rank_id];

      PADDLE_ENFORCE(
          slot_meta.HasTensorMeta() > 0,
          paddle::platform::errors::Fatal(
              "We require TensorMeta in GradInputMeta() to obtain forward data "
              "types."
              "However, no TensorMeta is detected in bwd_out_meta_."));

      auto fwd_data_type = paddle::framework::TransToProtoVarType(
          slot_meta.GetTensorMeta().dtype);
      const paddle::experimental::Tensor& grad = slot_out_grads[rank_id];

      if (paddle::framework::IsComplexType(fwd_data_type)) continue;

      // Only Handle Complex To Real for DenseTensor for now
      if (phi::DenseTensor::classof(grad.impl().get())) {
        phi::DenseTensor* grad_dense_tensor =
            static_cast<phi::DenseTensor*>(grad.impl().get());

        auto curr_data_type =
            paddle::framework::TransToProtoVarType(grad_dense_tensor->type());
        if (!paddle::framework::IsComplexType(curr_data_type)) continue;

        // Convert Complex GradOut to Real
        auto out = std::make_shared<phi::DenseTensor>();
        paddle::framework::TransComplexToReal(fwd_data_type, curr_data_type,
                                              *grad_dense_tensor, out.get());

        (*out_grads)[slot_id][rank_id].set_impl(out);
      }
    }
  }
}

414
}  // namespace egr