estimate_cost.py 22.9 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15 16 17 18 19 20 21 22 23 24
from collections import OrderedDict
from functools import reduce

import paddle
from paddle.distributed.fleet.meta_optimizers.common import OpRole

from .base_cost import Cost
from ..operators.common import get_distributed_operator_impl_container
from ..dist_tensor import DistributedTensor

25 26

class CostEstimator:
27
    _sepical_op_type = ["fused_attention", "fused_feedforward"]
28

29 30
    def __init__(self,
                 program,
31 32 33 34
                 cluster,
                 mode="modeling",
                 rank=None,
                 loop_count=10):
35 36 37 38
        self._program = program
        self._cluster = cluster
        self._check_mode(mode)
        self._mode = mode
39 40 41 42 43 44 45 46
        self._rank = rank if rank is not None else paddle.distributed.get_rank()
        self._loop_count = loop_count
        self._global_cost = Cost()
        self._local_cost_mapping = {}
        self._detailed_cost = OrderedDict(
        )  # {`op_id`: {"reshard": [], "dist_op": [], "local_cost": local_cost}}}
        self._bubble_time_mapping = {}
        self._ordered_ops = []
47 48
        self.max_memories = {}
        self.max_memory = None
49 50 51 52 53 54 55 56

    @property
    def loop_count(self):
        return self._loop_count

    @property
    def detailed_cost(self):
        return self._detailed_cost
57 58 59 60 61

    @property
    def program(self):
        return self._program

62 63 64 65
    @property
    def rank(self):
        return self._rank

66 67 68 69 70 71 72 73 74 75 76 77 78 79
    @property
    def dist_context(self):
        return self._dist_context

    @property
    def cluster(self):
        return self._cluster

    @property
    def mode(self):
        return self._mode

    @property
    def global_cost(self):
80 81 82 83 84 85 86 87 88 89 90 91
        max_time = 0
        memory = 0
        flops = 0
        for rank in self._local_cost_mapping:
            cost = self._local_cost_mapping[rank]
            if cost.time > max_time:
                max_time = cost.time
            memory += cost.memory
            flops += cost.flops
        self._global_cost.time = max_time
        self._global_cost.memory = memory
        self._global_cost.flops = flops
92 93
        return self._global_cost

94 95 96 97
    def local_cost(self, rank=None):
        rank = self.rank if rank is None else rank
        if rank not in self._local_cost_mapping:
            self._local_cost_mapping[rank] = Cost()
98

99
        return self._local_cost_mapping[rank]
100

101 102 103
    def local_bubble_time(self, rank=None):
        rank = self.rank if rank is None else rank
        return self._bubble_time_mapping[rank]
104 105 106 107 108

    def _check_mode(self, mode):
        if mode not in ["modeling", "profiling"]:
            raise ValueError(
                "Just support modeling and profiling, but got {}".format(mode))
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

    def _is_special_var_name(self, var_name):
        special_var_name = ["lod_tensor_blocking_queue_0"]
        if var_name in special_var_name:
            return True
        return False

    def _estimate_core(self, dist_context, resharder, block):
        from ..reshard import get_var_with_recursion
        ops = block.ops
        loop_count = None
        if block.desc.id != self.program.global_block().desc.id:
            loop_count = self.loop_count
        else:
            loop_count = 1
        for i in range(loop_count):
            for op in ops:
                self._detailed_cost[op.desc.id()] = OrderedDict()
127
                # If in the while sub block, the detail of cost is the last cost
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
                detail = self._detailed_cost[op.desc.id()]
                detail["reshard_cost"] = OrderedDict()  #
                detail["dist_op_cost"] = []
                if int(op.attr('op_role')) == int(OpRole.Optimize):
                    continue
                if op.type in [
                        "create_py_reader", "create_double_buffer_reader",
                        "read"
                ]:
                    continue

                # NOTE: It does not support nested loop and just supports while op when op has sub block now.
                if op.type == "while":
                    while_block = self.program.blocks[op.attr("sub_block").id]
                    self._estimate_core(dist_context, resharder, while_block)
                    continue

                for var_name in op.input_arg_names:
                    if self._is_special_var_name(var_name):
                        continue
                    var = get_var_with_recursion(var_name, block, self.program)
                    reshard_cost = resharder.get_cost(op, var, self.cluster)

151
                    # Calc reshard cost
152 153 154 155 156 157
                    if reshard_cost is not None:
                        detail["reshard_cost"][var_name] = reshard_cost

                        comm_costs = reshard_cost[0]
                        local_comp_cost = reshard_cost[1]
                        for comm_cost in comm_costs:
158 159
                            # Time is cumulative in global cost and local cost, but memory and flops just are cumulative in global cost.
                            # Comm sync
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
                            for item in comm_cost:
                                group_ranks, cost = item
                                max_time = None
                                cost_time = {}
                                for rank in group_ranks:
                                    rank_cost = self.local_cost(rank)
                                    cost_time[rank] = rank_cost.time
                                    if max_time is None:
                                        max_time = rank_cost.time
                                    else:
                                        if max_time < rank_cost.time:
                                            max_time = rank_cost.time

                                for rank in group_ranks:
                                    self.local_cost(
                                        rank).time = max_time + cost.time

                                    if rank not in self._bubble_time_mapping:
                                        self._bubble_time_mapping[rank] = 0

                                    self._bubble_time_mapping[rank] += (
                                        max_time - cost_time[rank])

                        for rank in local_comp_cost:
                            for comp_cost in local_comp_cost[rank]:
                                self.local_cost(rank).time += comp_cost.time

187
                # Calc dist op cost
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
                dist_op = dist_context.get_dist_op_for_program(op)
                op_dist_attr = dist_op.dist_attr
                processes = op_dist_attr.process_mesh.processes

                container = get_distributed_operator_impl_container(
                    op_dist_attr.impl_type)
                dist_impl = container.impls[op_dist_attr.impl_idx]

                dist_op_cost = dist_impl.calc_cost(op.attr('op_role'), dist_op,
                                                   dist_context, self.cluster)
                detail["dist_op_cost"] = dist_op_cost

                if dist_op_cost is None:
                    assert dist_op.serial_op.type in CostEstimator._sepical_op_type
                    continue
                for item in dist_op_cost:
                    if isinstance(item, list):
205
                        # Comm sync
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
                        for comm_op_cost in item:
                            max_time = None
                            cost_time = {}
                            group_ranks = comm_op_cost.group_ranks
                            for rank in comm_op_cost.group_ranks:
                                rank_cost = self.local_cost(rank)
                                cost_time[rank] = rank_cost.time
                                if max_time is None:
                                    max_time = rank_cost.time
                                else:
                                    if max_time < rank_cost.time:
                                        max_time = rank_cost.time
                            for rank in group_ranks:
                                self.local_cost(
                                    rank).time = max_time + comm_op_cost.time
                                if rank not in self._bubble_time_mapping:
                                    self._bubble_time_mapping[rank] = 0
                                self._bubble_time_mapping[rank] += (
                                    max_time - cost_time[rank])
                    elif isinstance(item, dict):
226
                        # Op just one
227
                        for rank in processes:
228
                            # DP+PP+MP
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
                            if rank not in item:
                                continue
                            self.local_cost(rank).time += item[rank].time

    def prepare(self):
        self._global_cost = Cost()
        self._local_cost_mapping = {}
        self._detailed_cost = OrderedDict()
        self._bubble_time_mapping = {}

    def _calculate_bytes(self, sizes, dtype):
        if sizes:
            total_count = reduce(lambda x, y: x * y, sizes)
        else:
            total_count = 0

        if dtype == paddle.float64 or dtype == paddle.int64:
            dtype_factor = 8
        elif dtype == paddle.float32 or dtype == paddle.int32:
            dtype_factor = 4
        elif dtype == paddle.float16 or dtype == paddle.bfloat16 \
            or dtype == paddle.int16:
            dtype_factor = 2
        elif dtype == paddle.int8 or dtype == paddle.uint8:
            dtype_factor = 1
        else:
            dtype_factor = 8

        memory = total_count * dtype_factor
        return memory

    def _estimate_max_memory_by_dist_op(self, dist_context):
        # This estimation will be improved, now reshard and inplace are not considered.
        # Persist var is not free.
        def _convert_pm_and_dm_to_str(process_mesh, dims_mapping):
            processes = ",".join([str(x) for x in process_mesh.processes])
            topology = ",".join([str(x) for x in process_mesh.topology])
            dims_mapping = ",".join([str(x) for x in dims_mapping])
            result = processes + topology + dims_mapping
            return result

        memories = {}
271
        self.max_memories = {}
272 273 274 275 276 277 278 279 280
        var_info = {
        }  # var_name: [[process_mesh, dims_mapping], [id]], [[process_mesh, dims_mapping], [id]]}

        for block in self.program.blocks:
            for op in block.ops:
                self._ordered_ops.append([op.desc.id(), op])
        self._ordered_ops.sort(key=lambda x: x[0])

        for op_id, op in self._ordered_ops:
281 282 283 284
            if op.type in [
                    "create_py_reader", "create_double_buffer_reader", "read"
            ]:
                continue
285 286 287 288 289 290 291 292 293 294 295
            dist_op = dist_context.get_dist_op_for_program(op)
            process_mesh = dist_op.dist_attr.process_mesh
            for var_name in op.input_arg_names:
                input_dims_mapping = dist_op.dist_attr.get_input_dims_mapping(
                    var_name)
                if var_name not in var_info:
                    var_info[var_name] = {}
                key = _convert_pm_and_dm_to_str(process_mesh,
                                                input_dims_mapping)
                if key not in var_info[var_name]:
                    var_info[var_name][key] = {}
296
                # It is even partition now
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
                if "memory" not in var_info[var_name][key]:
                    var = dist_op.get_serial_input(var_name)
                    global_sizes = var.shape
                    dtype = var.dtype
                    sizes = DistributedTensor.get_local_sizes(
                        global_sizes, input_dims_mapping, process_mesh.topology,
                        process_mesh.processes)
                    var_info[var_name][key]["memory"] = self._calculate_bytes(
                        sizes, dtype)
                if "position" not in var_info[var_name][key]:
                    var_info[var_name][key]["position"] = []
                var_info[var_name][key]["position"].append(op_id)

            for var_name in op.output_arg_names:
                output_dims_mapping = dist_op.dist_attr.get_output_dims_mapping(
                    var_name)
                if var_name not in var_info:
                    var_info[var_name] = {}
                key = _convert_pm_and_dm_to_str(process_mesh,
                                                output_dims_mapping)
                if key not in var_info[var_name]:
                    var_info[var_name][key] = {}
                if "memory" not in var_info[var_name][key]:
                    var = dist_op.get_serial_output(var_name)
                    global_sizes = var.shape
                    dtype = var.dtype
                    sizes = DistributedTensor.get_local_sizes(
                        global_sizes, output_dims_mapping,
                        process_mesh.topology, process_mesh.processes)
                    var_info[var_name][key]["memory"] = self._calculate_bytes(
                        sizes, dtype)
                if "position" not in var_info[var_name][key]:
                    var_info[var_name][key]["position"] = []
                var_info[var_name][key]["position"].append(op_id)

        has_used_vars = set()
        for op_id, op in self._ordered_ops:
334 335 336 337
            if op.type in [
                    "create_py_reader", "create_double_buffer_reader", "read"
            ]:
                continue
338 339 340 341 342 343 344 345 346 347 348
            can_free_memories = {}
            can_free_vars = set()
            dist_op = dist_context.get_dist_op_for_program(op)
            process_mesh = dist_op.dist_attr.process_mesh
            for var_name in op.input_arg_names:
                input_dims_mapping = dist_op.dist_attr.get_input_dims_mapping(
                    var_name)
                key = _convert_pm_and_dm_to_str(process_mesh,
                                                input_dims_mapping)
                has_used_var = var_name + key
                var = dist_op.get_serial_input(var_name)
349
                # Not used
350 351 352 353 354 355
                if var_name + key not in has_used_vars:
                    has_used_vars.add(has_used_var)
                    for process in process_mesh.processes:
                        if process not in memories:
                            memories[process] = 0
                        memories[process] += var_info[var_name][key]["memory"]
356
                # Used
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
                else:
                    if op_id == var_info[var_name][key]["position"][-1]:
                        if has_used_var not in can_free_vars:
                            can_free_vars.add(has_used_var)
                            if not var.persistable:
                                for process in process_mesh.processes:
                                    if process not in can_free_memories:
                                        can_free_memories[process] = 0
                                    can_free_memories[process] += var_info[
                                        var_name][key]["memory"]

            for var_name in op.output_arg_names:
                output_dims_mapping = dist_op.dist_attr.get_output_dims_mapping(
                    var_name)
                key = _convert_pm_and_dm_to_str(process_mesh,
                                                output_dims_mapping)
                has_used_var = var_name + key
                var = dist_op.get_serial_output(var_name)
375
                # Not used
376 377 378 379 380 381
                if var_name + key not in has_used_vars:
                    has_used_vars.add(has_used_var)
                    for process in process_mesh.processes:
                        if process not in memories:
                            memories[process] = 0
                        memories[process] += var_info[var_name][key]["memory"]
382
                # Used
383 384 385 386 387 388 389 390 391 392 393
                else:
                    if op_id == var_info[var_name][key]["position"][-1]:
                        if has_used_var not in can_free_vars:
                            can_free_vars.add(has_used_var)
                            if not var.persistable:
                                for process in process_mesh.processes:
                                    if process not in can_free_memories:
                                        can_free_memories[process] = 0
                                    can_free_memories[process] += var_info[
                                        var_name][key]["memory"]

394
            # Calc peak memory
395
            for process in memories:
396 397
                if process not in self.max_memories:
                    self.max_memories[process] = memories[process]
398
                else:
399 400
                    if memories[process] > self.max_memories[process]:
                        self.max_memories[process] = memories[process]
401

402
            # Free memory
403 404 405 406 407
            for process in can_free_memories:
                if process in memories:
                    memories[process] -= can_free_memories[process]

        # Calculate the max memory in all ranks
408 409
        max_memory = max(self.max_memories.values())
        self.max_memory = max_memory
410 411 412 413 414 415 416 417 418 419 420 421 422

        return max_memory

    def estimate(self, dist_context, resharder=None):
        self.prepare()
        from ..reshard import Resharder
        resharder = Resharder(self.program, None, self.rank, dist_context,
                              []) if resharder is None else resharder

        block = self.program.global_block()
        self._estimate_core(dist_context, resharder, block)

        return self.global_cost
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562

    def _print_tag(self, max_len, length):
        tag = "+" + "-" * max_len
        for i in range(length):
            print(tag, end="")
            if i == length - 1:
                print("+")

    def _print_vals(self, vals, max_len):
        for idx, val in enumerate(vals):
            s = "|" + str(val).center(max_len)
            print(s, end="")
            if idx == len(vals) - 1:
                print("|")

    def _pretty_print_memory_cost(self):
        """Print memory of every rank prettily."""
        if not self.max_memories or not self.max_memory:
            raise ValueError("Please calculate memory cost before print.")

        # Padding automatically
        max_len = 0
        header = ["Rank", "Memory(MiB)"]
        memories = [
            int(item // 1e6) for item in list(self.max_memories.values())
        ]
        for memory in (memories + header):
            if len(str(memory)) > max_len:
                max_len = len(str(memory))
        max_len += 4  # for pretty print of center

        # Print tag
        self._print_tag(max_len, len(header))

        # Print header
        self._print_vals(header, max_len)

        # Print tag
        self._print_tag(max_len, len(header))

        # Print rank and its memory
        for i in range(len(self.max_memories)):
            memory = memories[i]
            vals = [i, memory]
            self._print_vals(vals, max_len)
            self._print_tag(max_len, len(header))

    def _pretty_print_global(self):
        """Print global execution time and max memory prettily."""
        if not self.max_memories or not self.max_memory:
            raise ValueError("Please calculate cost before print.")

        # Padding automatically
        max_len = 0
        header = ["Execution Time(ms)", "Max Memory(MiB)"]
        vals = [round(self.global_cost.time, 3), int(self.max_memory // 1e6)]
        for memory in (vals + header):
            if len(str(memory)) > max_len:
                max_len = len(str(memory))
        max_len += 4  # for pretty print of center

        # Print tag
        self._print_tag(max_len, len(header))

        # Print header
        self._print_vals(header, max_len)

        # Print tag
        self._print_tag(max_len, len(header))

        # Print exec time and max memory
        self._print_vals(vals, max_len)

        # Print tag
        self._print_tag(max_len, len(header))

    def pretty_print_cost(self):
        """Print cost prettily."""
        print("The global execution time and max memory are as follows:")
        self._pretty_print_global()
        print("The memory of every rank is as follows:")
        self._pretty_print_memory_cost()


def get_cost_from_engine(engine, mode):
    from ..utils import to_list
    # Construct cost estimator by original main program
    serial_main_prog = engine._serial_main_progs[mode].clone(
    ) if mode in engine._serial_main_progs else engine._orig_main_prog.clone()

    serial_startup_prog = engine._serial_startup_progs[mode].clone(
    ) if mode in engine._serial_startup_progs else engine._orig_startup_prog.clone(
    )
    losses = to_list(
        engine._loss) if (not isinstance(engine._loss, paddle.nn.Layer)
                          and not callable(engine._loss)) else engine._losses

    if mode in engine._dist_contexts:
        dist_context = engine._dist_contexts[mode]
        completer = engine._planners[mode].completer
    else:
        from ..completion import Completer
        from ..dist_context import DistributedContext
        dist_context = DistributedContext(serial_main_prog, serial_startup_prog,
                                          engine._optimizer, losses, {},
                                          {"loss": losses}, engine._cluster,
                                          engine._strategy)
        completer = Completer(dist_context)
        completer.complete_forward_annotation()
        dist_context.block_state.parse_forward_blocks(
            dist_context.serial_main_program)

    if mode == "eval" or mode == "predict":
        cost_estimator = CostEstimator(serial_main_prog, engine._cluster)
    elif mode == "train":
        from ..parallelizer_v2 import Parallelizer
        # Get serial main program with backward
        serial_optimizer = engine._optimizer
        parallelizer = Parallelizer(mode, completer, dist_context)
        # Generate backward
        loss_name = dist_context.serial_loss.name
        serial_loss = serial_main_prog.global_block()._var_recursive(loss_name)
        params_grads = parallelizer._generate_backward(serial_main_prog,
                                                       serial_startup_prog,
                                                       serial_loss)

        # Generate optimizer
        optimizer_ops = parallelizer._generate_optimizer(
            serial_main_prog, serial_startup_prog, serial_optimizer,
            params_grads)
        cost_estimator = CostEstimator(serial_main_prog, engine._cluster)

    # Estimate global_cost and  max memory
    global_cost = cost_estimator.estimate(dist_context)
    max_memory = cost_estimator._estimate_max_memory_by_dist_op(dist_context)

    # Print the cost
    cost_estimator.pretty_print_cost()

    return global_cost, max_memory