test_exponential_op.py 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle
import numpy as np
from op_test import OpTest

paddle.enable_static()


class TestExponentialOp1(OpTest):
    def setUp(self):
        self.op_type = "exponential"
        self.config()

        self.attrs = {"lambda": self.lam}
        self.inputs = {'X': np.empty([1024, 1024], dtype=self.dtype)}
        self.outputs = {'Out': np.ones([1024, 1024], dtype=self.dtype)}

    def config(self):
        self.lam = 0.5
        self.dtype = "float64"

    def test_check_output(self):
        self.check_output_customized(self.verify_output)

    def verify_output(self, outs):
        hist1, _ = np.histogram(outs[0], range=(0, 5))
        hist1 = hist1.astype("float32")
        hist1 = hist1 / float(outs[0].size)

        data_np = np.random.exponential(1. / self.lam, [1024, 1024])
        hist2, _ = np.histogram(data_np, range=(0, 5))
        hist2 = hist2.astype("float32")
        hist2 = hist2 / float(data_np.size)

        self.assertTrue(
            np.allclose(
                hist1, hist2, rtol=0.02),
            "actual: {}, expected: {}".format(hist1, hist2))

    def test_check_grad_normal(self):
        self.check_grad(
            ['X'],
            'Out',
            user_defined_grads=[np.zeros(
                [1024, 1024], dtype=self.dtype)],
            user_defined_grad_outputs=[
                np.random.rand(1024, 1024).astype(self.dtype)
            ])


class TestExponentialOp2(TestExponentialOp1):
    def config(self):
        self.lam = 0.25
        self.dtype = "float32"


class TestExponentialAPI(unittest.TestCase):
    def test_static(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            x_np = np.full([10, 10], -1.)
            x = paddle.static.data(name="X", shape=[10, 10], dtype='float64')
            x.exponential_(1.0)

            exe = paddle.static.Executor()
            out = exe.run(paddle.static.default_main_program(),
                          feed={"X": x_np},
                          fetch_list=[x])
            self.assertTrue(np.min(out) >= 0)

    def test_dygraph(self):
        paddle.disable_static()
        x = paddle.full([10, 10], -1., dtype='float32')
        x.exponential_(0.5)
        self.assertTrue(np.min(x.numpy()) >= 0)
        paddle.enable_static()

    # Test GPU Fixed random number, which is generated by 'curandStatePhilox4_32_10_t'
    def test_fixed_random_number(self):
        if not paddle.is_compiled_with_cuda():
            return

        # Note(zhouwei): The Number of threads is determined by 
        # 'multiProcessorCount * maxThreadsPerMultiProcessor'. So, different 
        # GPU have different number of threads, which result in different 
        # random value. Only test on V100 GPU here.
        if not "V100" in paddle.device.cuda.get_device_name():
            return

        print("Test Fixed Random number on V100 GPU------>")
        paddle.disable_static()
        paddle.set_device('gpu')
        paddle.seed(2021)

        x = paddle.empty([64, 3, 1024, 1024], dtype="float32")
        x.exponential_(1.0)
        x_np = x.numpy()
        expect = [
            0.80073667, 0.2249291, 0.07734892, 1.25392, 0.14013891, 0.45736602,
            1.9735607, 0.30490234, 0.57100505, 0.8115938
        ]

        self.assertTrue(np.allclose(x_np[0, 0, 0, 0:10], expect))
        expect = [
            1.4296371e+00, 9.5411777e-01, 5.2575850e-01, 2.4805880e-01,
            1.2322118e-04, 8.4604341e-01, 2.1111444e-01, 1.4143821e+00,
            2.8194717e-01, 1.1360573e+00
        ]
        self.assertTrue(np.allclose(x_np[16, 1, 300, 200:210], expect))
        expect = [
            1.3448033, 0.35146526, 1.7380928, 0.32012638, 0.10396296,
            0.51344526, 0.15308502, 0.18712929, 0.03888268, 0.20771872
        ]
        self.assertTrue(np.allclose(x_np[32, 1, 600, 500:510], expect))
        expect = [
            0.5107464, 0.20970327, 2.1986802, 1.580056, 0.31036147, 0.43966478,
            0.9056133, 0.30119267, 1.4797124, 1.4319834
        ]
        self.assertTrue(np.allclose(x_np[48, 2, 900, 800:810], expect))
        expect = [
            3.4640615, 1.1019983, 0.41195083, 0.22681557, 0.291846, 0.53617656,
            1.5791925, 2.4645927, 0.04094889, 0.9057725
        ]
        self.assertTrue(np.allclose(x_np[63, 2, 1023, 1000:1010], expect))

        x = paddle.empty([10, 10], dtype="float32")
        x.exponential_(3.0)
        x_np = x.numpy()
        expect = [
            0.02831675, 0.1691551, 0.6798956, 0.69347525, 0.0243443, 0.22180498,
            0.30574575, 0.9839696, 0.2834912, 0.59420055
        ]
        self.assertTrue(np.allclose(x_np[5, 0:10], expect))

        x = paddle.empty([16, 2, 1024, 768], dtype="float64")
        x.exponential_(0.25)
        x_np = x.numpy()
        expect = [
            10.0541229, 12.67860643, 1.09850734, 7.35289643, 2.65471225,
            3.86217432, 2.97902086, 2.92744479, 2.67927152, 0.19667352
        ]
        self.assertTrue(np.allclose(x_np[0, 0, 0, 100:110], expect))
        expect = [
            0.68328125, 3.1454553, 0.92158376, 1.95842188, 1.05296941,
            12.93242051, 5.20255978, 3.3588624, 1.57377174, 5.73194183
        ]
        self.assertTrue(np.allclose(x_np[4, 0, 300, 190:200], expect))
        expect = [
            1.37973974, 3.45036798, 7.94625406, 1.62610973, 0.31032122,
            4.13596493, 1.98494535, 1.13207041, 8.30592769, 2.81460147
        ]
        self.assertTrue(np.allclose(x_np[8, 1, 600, 300:310], expect))
        expect = [
            2.27710811, 12.25003028, 2.96409124, 4.72405788, 0.67917249,
            4.35856718, 0.46870976, 2.31120149, 9.61595826, 4.64446271
        ]
        self.assertTrue(np.allclose(x_np[12, 1, 900, 500:510], expect))
        expect = [
            0.95883744, 1.57316361, 15.22524512, 20.49559882, 13.70008548,
            3.29430143, 3.90390424, 0.9146657, 0.80972249, 0.33376219
        ]
        self.assertTrue(np.allclose(x_np[15, 1, 1023, 750:760], expect))

        x = paddle.empty([512, 768], dtype="float64")
        x.exponential_(0.3)
        x_np = x.numpy()
        expect = [
            8.79266704, 4.79596009, 2.75480243, 6.04670011, 0.35379556,
            0.76864868, 3.17428251, 0.26556859, 12.22485885, 10.51690383
        ]
        self.assertTrue(np.allclose(x_np[0, 200:210], expect))
        expect = [
            5.6341126, 0.52243418, 5.36410796, 6.83672002, 11.9243311,
            5.85985566, 5.75169548, 0.13877972, 6.1348385, 3.82436519
        ]
        self.assertTrue(np.allclose(x_np[300, 400:410], expect))
        expect = [
            4.94883581, 0.56345306, 0.85841585, 1.92287801, 6.10036656,
            1.19524847, 3.64735434, 5.19618716, 2.57467974, 3.49152791
        ]
        self.assertTrue(np.allclose(x_np[500, 700:710], expect))

        x = paddle.empty([10, 10], dtype="float64")
        x.exponential_(4.0)
        x_np = x.numpy()
        expect = [
            0.15713826, 0.56395964, 0.0680941, 0.00316643, 0.27046853,
            0.19852724, 0.12776634, 0.09642974, 0.51977551, 1.33739699
        ]
        self.assertTrue(np.allclose(x_np[5, 0:10], expect))

        paddle.enable_static()


if __name__ == "__main__":
    unittest.main()