networks.html 57.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Networks &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="索引"
              href="../../../genindex.html"/>
        <link rel="search" title="搜索" href="../../../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../../../index.html"/>
        <link rel="up" title="Model Configuration" href="../model_configs.html"/>
        <link rel="next" title="Parameter Attribute" href="attr.html"/>
        <link rel="prev" title="Pooling" href="pooling.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
68
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
69 70 71 72 73 74 75 76 77 78 79 80
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
81
          <li><a href="/">Home</a></li>
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
        </ul>
      </div>
      <div class="doc-module">
        
        <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_cn.html">新手入门</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../howto/index_cn.html">进阶指南</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="../../index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../faq/index_cn.html">FAQ</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../getstarted/build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/docker_install_cn.html">PaddlePaddle的Docker容器使用方式</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/ubuntu_install_cn.html">Ubuntu部署PaddlePaddle</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/cmake/build_from_source_cn.html">PaddlePaddle的编译选项</a></li>
</ul>
</li>
119
<li class="toctree-l2"><a class="reference internal" href="../../../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../../howto/index_cn.html">进阶指南</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cmd_parameter/index_cn.html">设置命令行参数</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cluster/cluster_train_cn.html">运行分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/k8s/k8s_basis_cn.html">Kubernetes 简介</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/k8s/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/k8s/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/write_docs_cn.html">如何贡献/修改文档</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/deep_model/rnn/index_cn.html">RNN相关模型</a><ul>
136
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/rnn_config_cn.html">RNN配置</a></li>
137 138 139 140 141 142 143 144 145 146 147 148
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/optimization/gpu_profiling_cn.html">GPU性能分析与调优</a></li>
</ul>
</li>
<li class="toctree-l1 current"><a class="reference internal" href="../../index_cn.html">API</a><ul class="current">
<li class="toctree-l2 current"><a class="reference internal" href="../model_configs.html">模型配置</a><ul class="current">
<li class="toctree-l3"><a class="reference internal" href="activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="layer.html">Layers</a></li>
149
<li class="toctree-l3"><a class="reference internal" href="evaluators.html">Evaluators</a></li>
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
<li class="toctree-l3"><a class="reference internal" href="optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="pooling.html">Pooling</a></li>
<li class="toctree-l3 current"><a class="current reference internal" href="#">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../data.html">数据访问</a></li>
<li class="toctree-l2"><a class="reference internal" href="../run_logic.html">训练与应用</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../../faq/index_cn.html">FAQ</a></li>
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
        <li><a href="../../index_cn.html">API</a> > </li>
      
        <li><a href="../model_configs.html">Model Configuration</a> > </li>
      
    <li>Networks</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="networks">
<h1>Networks<a class="headerlink" href="#networks" title="永久链接至标题"></a></h1>
<p>The v2.networks module contains pieces of neural network that combine multiple layers.</p>
<div class="section" id="nlp">
<h2>NLP<a class="headerlink" href="#nlp" title="永久链接至标题"></a></h2>
<div class="section" id="sequence-conv-pool">
<h3>sequence_conv_pool<a class="headerlink" href="#sequence-conv-pool" title="永久链接至标题"></a></h3>
201
<dl class="function">
202
<dt>
203
<code class="descclassname">paddle.v2.networks.</code><code class="descname">sequence_conv_pool</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
204 205 206 207 208 209 210 211
<dd><p>Text convolution pooling layers helper.</p>
<p>Text input =&gt; Context Projection =&gt; FC Layer =&gt; Pooling =&gt; Output.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; name of output layer(pooling layer name)</li>
212
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; name of input layer</li>
213 214 215 216 217
<li><strong>context_len</strong> (<em>int</em>) &#8211; context projection length. See
context_projection&#8217;s document.</li>
<li><strong>hidden_size</strong> (<em>int</em>) &#8211; FC Layer size.</li>
<li><strong>context_start</strong> (<em>int</em><em> or </em><em>None</em>) &#8211; context projection length. See
context_projection&#8217;s context_start.</li>
218 219
<li><strong>pool_type</strong> (<em>BasePoolingType.</em>) &#8211; pooling layer type. See pooling_layer&#8217;s document.</li>
<li><strong>context_proj_layer_name</strong> (<em>basestring</em>) &#8211; context projection layer name.
220
None if user don&#8217;t care.</li>
221
<li><strong>context_proj_param_attr</strong> (<em>ParameterAttribute</em><em> or </em><em>None.</em>) &#8211; context projection parameter attribute.
222
None if user don&#8217;t care.</li>
223 224 225
<li><strong>fc_layer_name</strong> (<em>basestring</em>) &#8211; fc layer name. None if user don&#8217;t care.</li>
<li><strong>fc_param_attr</strong> (<em>ParameterAttribute</em><em> or </em><em>None</em>) &#8211; fc layer parameter attribute. None if user don&#8217;t care.</li>
<li><strong>fc_bias_attr</strong> (<em>ParameterAttribute</em><em> or </em><em>None</em>) &#8211; fc bias parameter attribute. False if no bias,
226
None if user don&#8217;t care.</li>
227 228
<li><strong>fc_act</strong> (<em>BaseActivation</em>) &#8211; fc layer activation type. None means tanh</li>
<li><strong>pool_bias_attr</strong> (<em>ParameterAttribute</em><em> or </em><em>None.</em>) &#8211; pooling layer bias attr. None if don&#8217;t care.
229
False if no bias.</li>
230 231 232
<li><strong>fc_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; fc layer extra attribute.</li>
<li><strong>context_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; context projection layer extra attribute.</li>
<li><strong>pool_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; pooling layer extra attribute.</li>
233 234 235 236 237 238
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">output layer name.</p>
</td>
</tr>
239
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
240 241 242 243 244 245 246 247 248
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="text-conv-pool">
<span id="api-trainer-config-helpers-network-text-conv-pool"></span><h3>text_conv_pool<a class="headerlink" href="#text-conv-pool" title="永久链接至标题"></a></h3>
249
<dl class="function">
250
<dt>
251
<code class="descclassname">paddle.v2.networks.</code><code class="descname">text_conv_pool</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
252 253 254 255 256 257 258 259
<dd><p>Text convolution pooling layers helper.</p>
<p>Text input =&gt; Context Projection =&gt; FC Layer =&gt; Pooling =&gt; Output.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; name of output layer(pooling layer name)</li>
260
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; name of input layer</li>
261 262 263 264 265
<li><strong>context_len</strong> (<em>int</em>) &#8211; context projection length. See
context_projection&#8217;s document.</li>
<li><strong>hidden_size</strong> (<em>int</em>) &#8211; FC Layer size.</li>
<li><strong>context_start</strong> (<em>int</em><em> or </em><em>None</em>) &#8211; context projection length. See
context_projection&#8217;s context_start.</li>
266 267
<li><strong>pool_type</strong> (<em>BasePoolingType.</em>) &#8211; pooling layer type. See pooling_layer&#8217;s document.</li>
<li><strong>context_proj_layer_name</strong> (<em>basestring</em>) &#8211; context projection layer name.
268
None if user don&#8217;t care.</li>
269
<li><strong>context_proj_param_attr</strong> (<em>ParameterAttribute</em><em> or </em><em>None.</em>) &#8211; context projection parameter attribute.
270
None if user don&#8217;t care.</li>
271 272 273
<li><strong>fc_layer_name</strong> (<em>basestring</em>) &#8211; fc layer name. None if user don&#8217;t care.</li>
<li><strong>fc_param_attr</strong> (<em>ParameterAttribute</em><em> or </em><em>None</em>) &#8211; fc layer parameter attribute. None if user don&#8217;t care.</li>
<li><strong>fc_bias_attr</strong> (<em>ParameterAttribute</em><em> or </em><em>None</em>) &#8211; fc bias parameter attribute. False if no bias,
274
None if user don&#8217;t care.</li>
275 276
<li><strong>fc_act</strong> (<em>BaseActivation</em>) &#8211; fc layer activation type. None means tanh</li>
<li><strong>pool_bias_attr</strong> (<em>ParameterAttribute</em><em> or </em><em>None.</em>) &#8211; pooling layer bias attr. None if don&#8217;t care.
277
False if no bias.</li>
278 279 280
<li><strong>fc_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; fc layer extra attribute.</li>
<li><strong>context_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; context projection layer extra attribute.</li>
<li><strong>pool_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; pooling layer extra attribute.</li>
281 282 283 284 285 286
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">output layer name.</p>
</td>
</tr>
287
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
288 289 290 291 292 293 294 295 296 297 298 299
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="images">
<h2>Images<a class="headerlink" href="#images" title="永久链接至标题"></a></h2>
<div class="section" id="img-conv-bn-pool">
<h3>img_conv_bn_pool<a class="headerlink" href="#img-conv-bn-pool" title="永久链接至标题"></a></h3>
300
<dl class="function">
301
<dt>
302
<code class="descclassname">paddle.v2.networks.</code><code class="descname">img_conv_bn_pool</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
303 304 305 306 307 308 309
<dd><p>Convolution, batch normalization, pooling group.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; group name</li>
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; layer&#8217;s input</li>
<li><strong>filter_size</strong> (<em>int</em>) &#8211; see img_conv_layer&#8217;s document</li>
<li><strong>num_filters</strong> (<em>int</em>) &#8211; see img_conv_layer&#8217;s document</li>
<li><strong>pool_size</strong> (<em>int</em>) &#8211; see img_pool_layer&#8217;s document.</li>
<li><strong>pool_type</strong> (<em>BasePoolingType</em>) &#8211; see img_pool_layer&#8217;s document.</li>
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; see batch_norm_layer&#8217;s document.</li>
<li><strong>groups</strong> (<em>int</em>) &#8211; see img_conv_layer&#8217;s document</li>
<li><strong>conv_stride</strong> (<em>int</em>) &#8211; see img_conv_layer&#8217;s document.</li>
<li><strong>conv_padding</strong> (<em>int</em>) &#8211; see img_conv_layer&#8217;s document.</li>
<li><strong>conv_bias_attr</strong> (<em>ParameterAttribute</em>) &#8211; see img_conv_layer&#8217;s document.</li>
<li><strong>num_channel</strong> (<em>int</em>) &#8211; see img_conv_layer&#8217;s document.</li>
<li><strong>conv_param_attr</strong> (<em>ParameterAttribute</em>) &#8211; see img_conv_layer&#8217;s document.</li>
<li><strong>shared_bias</strong> (<em>bool</em>) &#8211; see img_conv_layer&#8217;s document.</li>
<li><strong>conv_layer_attr</strong> (<em>ExtraLayerOutput</em>) &#8211; see img_conv_layer&#8217;s document.</li>
<li><strong>bn_param_attr</strong> (<em>ParameterAttribute.</em>) &#8211; see batch_norm_layer&#8217;s document.</li>
<li><strong>bn_bias_attr</strong> &#8211; see batch_norm_layer&#8217;s document.</li>
<li><strong>bn_layer_attr</strong> &#8211; ParameterAttribute.</li>
<li><strong>pool_stride</strong> (<em>int</em>) &#8211; see img_pool_layer&#8217;s document.</li>
<li><strong>pool_padding</strong> (<em>int</em>) &#8211; see img_pool_layer&#8217;s document.</li>
<li><strong>pool_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; see img_pool_layer&#8217;s document.</li>
330 331 332 333 334 335
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">Layer groups output</p>
</td>
</tr>
336
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
337 338 339 340 341 342 343 344 345
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="img-conv-group">
<h3>img_conv_group<a class="headerlink" href="#img-conv-group" title="永久链接至标题"></a></h3>
346
<dl class="function">
347
<dt>
348
<code class="descclassname">paddle.v2.networks.</code><code class="descname">img_conv_group</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
349 350 351 352 353 354
<dd><p>Image Convolution Group, Used for vgg net.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
<li><strong>conv_batchnorm_drop_rate</strong> (<em>list</em>) &#8211; if conv_with_batchnorm[i] is true,
conv_batchnorm_drop_rate[i] represents the drop rate of each batch norm.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; layer&#8217;s input.</li>
<li><strong>conv_num_filter</strong> (<em>int</em>) &#8211; output channels num.</li>
<li><strong>pool_size</strong> (<em>int</em>) &#8211; pooling filter size.</li>
<li><strong>num_channels</strong> (<em>int</em>) &#8211; input channels num.</li>
<li><strong>conv_padding</strong> (<em>int</em>) &#8211; convolution padding size.</li>
<li><strong>conv_filter_size</strong> (<em>int</em>) &#8211; convolution filter size.</li>
<li><strong>conv_act</strong> (<em>BaseActivation</em>) &#8211; activation funciton after convolution.</li>
<li><strong>conv_with_batchnorm</strong> (<em>list</em>) &#8211; conv_with_batchnorm[i] represents
if there is a batch normalization after each convolution.</li>
<li><strong>pool_stride</strong> (<em>int</em>) &#8211; pooling stride size.</li>
<li><strong>pool_type</strong> (<em>BasePoolingType</em>) &#8211; pooling type.</li>
<li><strong>param_attr</strong> (<em>ParameterAttribute</em>) &#8211; Convolution param attribute.
None means default attribute.</li>
370 371 372
</ul>
</td>
</tr>
373 374 375 376
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">Layer&#8217;s output</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Type:</th><td class="field-body"><p class="first last">LayerOutput</p>
377 378 379 380 381 382 383 384 385
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="simple-img-conv-pool">
<span id="api-trainer-config-helpers-network-simple-img-conv-pool"></span><h3>simple_img_conv_pool<a class="headerlink" href="#simple-img-conv-pool" title="永久链接至标题"></a></h3>
386
<dl class="function">
387
<dt>
388
<code class="descclassname">paddle.v2.networks.</code><code class="descname">simple_img_conv_pool</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
389 390 391 392 393 394 395 396
<dd><p>Simple image convolution and pooling group.</p>
<p>Input =&gt; conv =&gt; pooling</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; group name</li>
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer name.</li>
<li><strong>filter_size</strong> (<em>int</em>) &#8211; see img_conv_layer for details</li>
<li><strong>num_filters</strong> (<em>int</em>) &#8211; see img_conv_layer for details</li>
<li><strong>pool_size</strong> (<em>int</em>) &#8211; see img_pool_layer for details</li>
<li><strong>pool_type</strong> (<em>BasePoolingType</em>) &#8211; see img_pool_layer for details</li>
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; see img_conv_layer for details</li>
<li><strong>groups</strong> (<em>int</em>) &#8211; see img_conv_layer for details</li>
<li><strong>conv_stride</strong> (<em>int</em>) &#8211; see img_conv_layer for details</li>
<li><strong>conv_padding</strong> (<em>int</em>) &#8211; see img_conv_layer for details</li>
<li><strong>bias_attr</strong> (<em>ParameterAttribute</em>) &#8211; see img_conv_layer for details</li>
<li><strong>num_channel</strong> (<em>int</em>) &#8211; see img_conv_layer for details</li>
<li><strong>param_attr</strong> (<em>ParameterAttribute</em>) &#8211; see img_conv_layer for details</li>
<li><strong>shared_bias</strong> (<em>bool</em>) &#8211; see img_conv_layer for details</li>
<li><strong>conv_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; see img_conv_layer for details</li>
<li><strong>pool_stride</strong> (<em>int</em>) &#8211; see img_pool_layer for details</li>
<li><strong>pool_padding</strong> (<em>int</em>) &#8211; see img_pool_layer for details</li>
<li><strong>pool_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; see img_pool_layer for details</li>
414 415 416 417 418 419
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">Layer&#8217;s output</p>
</td>
</tr>
420
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
421 422 423 424 425 426
</td>
</tr>
</tbody>
</table>
</dd></dl>

427 428 429
</div>
<div class="section" id="small-vgg">
<h3>small_vgg<a class="headerlink" href="#small-vgg" title="永久链接至标题"></a></h3>
430 431 432
</div>
<div class="section" id="vgg-16-network">
<h3>vgg_16_network<a class="headerlink" href="#vgg-16-network" title="永久链接至标题"></a></h3>
433
<dl class="function">
434
<dt>
435
<code class="descclassname">paddle.v2.networks.</code><code class="descname">vgg_16_network</code><span class="sig-paren">(</span><em>input_image</em>, <em>num_channels</em>, <em>num_classes=1000</em><span class="sig-paren">)</span></dt>
436 437 438 439 440 441 442
<dd><p>Same model from <a class="reference external" href="https://gist.github.com/ksimonyan/211839e770f7b538e2d8">https://gist.github.com/ksimonyan/211839e770f7b538e2d8</a></p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>num_classes</strong> &#8211; </li>
443
<li><strong>input_image</strong> (<em>LayerOutput</em>) &#8211; </li>
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
<li><strong>num_channels</strong> (<em>int</em>) &#8211; </li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first last"></p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="recurrent">
<h2>Recurrent<a class="headerlink" href="#recurrent" title="永久链接至标题"></a></h2>
<div class="section" id="lstm">
<h3>LSTM<a class="headerlink" href="#lstm" title="永久链接至标题"></a></h3>
<div class="section" id="lstmemory-unit">
<h4>lstmemory_unit<a class="headerlink" href="#lstmemory-unit" title="永久链接至标题"></a></h4>
463
<dl class="function">
464
<dt>
465
<code class="descclassname">paddle.v2.networks.</code><code class="descname">lstmemory_unit</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
466 467 468
<dd><p>Define calculations that a LSTM unit performs during a single time step.
This function itself is not a recurrent layer, so it can not be
directly used to process sequence inputs. This function is always used in
469 470 471 472 473 474
recurrent_group (see layers.py for more details) to implement attention
mechanism.</p>
<p>Please refer to  <strong>Generating Sequences With Recurrent Neural Networks</strong>
for more details about LSTM. The link goes as follows:
.. _Link: <a class="reference external" href="https://arxiv.org/abs/1308.0850">https://arxiv.org/abs/1308.0850</a></p>
<div class="math">
475
\[ \begin{align}\begin{aligned}i_t &amp; = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)\\f_t &amp; = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)\\c_t &amp; = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)\\o_t &amp; = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)\\h_t &amp; = o_t tanh(c_t)\end{aligned}\end{align} \]</div>
476 477 478
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">lstm_step</span> <span class="o">=</span> <span class="n">lstmemory_unit</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">layer1</span><span class="p">],</span>
                           <span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span>
479 480 481
                           <span class="n">act</span><span class="o">=</span><span class="n">TanhActivation</span><span class="p">(),</span>
                           <span class="n">gate_act</span><span class="o">=</span><span class="n">SigmoidActivation</span><span class="p">(),</span>
                           <span class="n">state_act</span><span class="o">=</span><span class="n">TanhActivation</span><span class="p">())</span>
482 483 484 485 486 487 488
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
489
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer name.</li>
490
<li><strong>out_memory</strong> (<em>LayerOutput | None</em>) &#8211; output of previous time step</li>
491 492
<li><strong>name</strong> (<em>basestring</em>) &#8211; lstmemory unit name.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; lstmemory unit size.</li>
493 494 495 496
<li><strong>param_attr</strong> (<em>ParameterAttribute</em>) &#8211; Parameter config, None if use default.</li>
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; lstm final activiation type</li>
<li><strong>gate_act</strong> (<em>BaseActivation</em>) &#8211; lstm gate activiation type</li>
<li><strong>state_act</strong> (<em>BaseActivation</em>) &#8211; lstm state activiation type.</li>
497
<li><strong>input_proj_bias_attr</strong> (<em>ParameterAttribute|False|None</em>) &#8211; bias attribute for input-to-hidden projection.
498
False means no bias, None means default bias.</li>
499 500
<li><strong>input_proj_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; extra layer attribute for input to hidden
projection of the LSTM unit, such as dropout, error clipping.</li>
501
<li><strong>lstm_bias_attr</strong> (<em>ParameterAttribute|False</em>) &#8211; bias parameter attribute of lstm layer.
502
False means no bias, None means default bias.</li>
503
<li><strong>lstm_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; lstm layer&#8217;s extra attribute.</li>
504 505 506 507 508 509
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">lstmemory unit name.</p>
</td>
</tr>
510
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
511 512 513 514 515 516 517 518 519
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="lstmemory-group">
<h4>lstmemory_group<a class="headerlink" href="#lstmemory-group" title="永久链接至标题"></a></h4>
520
<dl class="function">
521
<dt>
522
<code class="descclassname">paddle.v2.networks.</code><code class="descname">lstmemory_group</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
523
<dd><p>lstm_group is a recurrent_group version of Long Short Term Memory. It
524 525 526 527 528 529 530 531 532
does exactly the same calculation as the lstmemory layer (see lstmemory in
layers.py for the maths) does. A promising benefit is that LSTM memory
cell states, or hidden states in every time step are accessible to the
user. This is especially useful in attention model. If you do not need to
access the internal states of the lstm, but merely use its outputs,
it is recommended to use the lstmemory, which is relatively faster than
lstmemory_group.</p>
<p>NOTE: In PaddlePaddle&#8217;s implementation, the following input-to-hidden
multiplications:
533 534
<span class="math">\(W_{x_i}x_{t}\)</span> , <span class="math">\(W_{x_f}x_{t}\)</span>,
<span class="math">\(W_{x_c}x_t\)</span>, <span class="math">\(W_{x_o}x_{t}\)</span> are not done in lstmemory_unit to
535
speed up the calculations. Consequently, an additional mixed_layer with
536 537 538 539
full_matrix_projection must be included before lstmemory_unit is called.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">lstm_step</span> <span class="o">=</span> <span class="n">lstmemory_group</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">layer1</span><span class="p">],</span>
                            <span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span>
540 541 542
                            <span class="n">act</span><span class="o">=</span><span class="n">TanhActivation</span><span class="p">(),</span>
                            <span class="n">gate_act</span><span class="o">=</span><span class="n">SigmoidActivation</span><span class="p">(),</span>
                            <span class="n">state_act</span><span class="o">=</span><span class="n">TanhActivation</span><span class="p">())</span>
543 544 545 546 547 548 549
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
550
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer name.</li>
551
<li><strong>size</strong> (<em>int</em>) &#8211; lstmemory group size.</li>
552
<li><strong>name</strong> (<em>basestring</em>) &#8211; name of the lstmemory group.</li>
553
<li><strong>out_memory</strong> (<em>LayerOutput | None</em>) &#8211; output of previous time step</li>
554
<li><strong>reverse</strong> (<em>bool</em>) &#8211; is lstm reversed</li>
555 556 557 558 559
<li><strong>param_attr</strong> (<em>ParameterAttribute</em>) &#8211; Parameter config, None if use default.</li>
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; lstm final activiation type</li>
<li><strong>gate_act</strong> (<em>BaseActivation</em>) &#8211; lstm gate activiation type</li>
<li><strong>state_act</strong> (<em>BaseActivation</em>) &#8211; lstm state activiation type.</li>
<li><strong>lstm_bias_attr</strong> (<em>ParameterAttribute|False</em>) &#8211; bias parameter attribute of lstm layer.
560
False means no bias, None means default bias.</li>
561 562 563 564
<li><strong>input_proj_bias_attr</strong> (<em>ParameterAttribute|False|None</em>) &#8211; bias attribute for input-to-hidden projection.
False means no bias, None means default bias.</li>
<li><strong>input_proj_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; extra layer attribute for input to hidden
projection of the LSTM unit, such as dropout, error clipping.</li>
565
<li><strong>lstm_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; lstm layer&#8217;s extra attribute.</li>
566 567 568 569 570 571
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">the lstmemory group.</p>
</td>
</tr>
572
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
573 574 575 576 577 578 579 580 581
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="simple-lstm">
<h4>simple_lstm<a class="headerlink" href="#simple-lstm" title="永久链接至标题"></a></h4>
582
<dl class="function">
583
<dt>
584
<code class="descclassname">paddle.v2.networks.</code><code class="descname">simple_lstm</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
585 586 587 588 589 590 591 592 593 594 595 596 597
<dd><p>Simple LSTM Cell.</p>
<p>It just combine a mixed layer with fully_matrix_projection and a lstmemory
layer. The simple lstm cell was implemented as follow equations.</p>
<div class="math">
\[ \begin{align}\begin{aligned}i_t &amp; = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)\\f_t &amp; = \sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)\\c_t &amp; = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)\\o_t &amp; = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)\\h_t &amp; = o_t tanh(c_t)\end{aligned}\end{align} \]</div>
<p>Please refer <strong>Generating Sequences With Recurrent Neural Networks</strong> if you
want to know what lstm is. <a class="reference external" href="http://arxiv.org/abs/1308.0850">Link</a> is here.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; lstm layer name.</li>
598
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer name.</li>
599 600
<li><strong>size</strong> (<em>int</em>) &#8211; lstm layer size.</li>
<li><strong>reverse</strong> (<em>bool</em>) &#8211; whether to process the input data in a reverse order</li>
601 602
<li><strong>mat_param_attr</strong> (<em>ParameterAttribute</em>) &#8211; mixed layer&#8217;s matrix projection parameter attribute.</li>
<li><strong>bias_param_attr</strong> (<em>ParameterAttribute|False</em>) &#8211; bias parameter attribute. False means no bias, None
603
means default bias.</li>
604 605 606 607 608 609
<li><strong>inner_param_attr</strong> (<em>ParameterAttribute</em>) &#8211; lstm cell parameter attribute.</li>
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; lstm final activiation type</li>
<li><strong>gate_act</strong> (<em>BaseActivation</em>) &#8211; lstm gate activiation type</li>
<li><strong>state_act</strong> (<em>BaseActivation</em>) &#8211; lstm state activiation type.</li>
<li><strong>mixed_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; mixed layer&#8217;s extra attribute.</li>
<li><strong>lstm_cell_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; lstm layer&#8217;s extra attribute.</li>
610 611 612 613 614 615
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">lstm layer name.</p>
</td>
</tr>
616
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
617 618 619 620 621 622 623 624 625
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="bidirectional-lstm">
<h4>bidirectional_lstm<a class="headerlink" href="#bidirectional-lstm" title="永久链接至标题"></a></h4>
626
<dl class="function">
627
<dt>
628
<code class="descclassname">paddle.v2.networks.</code><code class="descname">bidirectional_lstm</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
<dd><p>A bidirectional_lstm is a recurrent unit that iterates over the input
sequence both in forward and bardward orders, and then concatenate two
outputs form a final output. However, concatenation of two outputs
is not the only way to form the final output, you can also, for example,
just add them together.</p>
<p>Please refer to  <strong>Neural Machine Translation by Jointly Learning to Align
and Translate</strong> for more details about the bidirectional lstm.
The link goes as follows:
.. _Link: <a class="reference external" href="https://arxiv.org/pdf/1409.0473v3.pdf">https://arxiv.org/pdf/1409.0473v3.pdf</a></p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">bi_lstm</span> <span class="o">=</span> <span class="n">bidirectional_lstm</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">input1</span><span class="p">],</span> <span class="n">size</span><span class="o">=</span><span class="mi">512</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; bidirectional lstm layer name.</li>
648
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer.</li>
649 650 651 652 653 654 655 656 657
<li><strong>size</strong> (<em>int</em>) &#8211; lstm layer size.</li>
<li><strong>return_seq</strong> (<em>bool</em>) &#8211; If set False, outputs of the last time step are
concatenated and returned.
If set True, the entire output sequences that are
processed in forward and backward directions are
concatenated and returned.</li>
</ul>
</td>
</tr>
658
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object accroding to the return_seq.</p>
659 660
</td>
</tr>
661
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
662 663 664 665 666 667 668 669 670 671 672 673
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="gru">
<h3>GRU<a class="headerlink" href="#gru" title="永久链接至标题"></a></h3>
<div class="section" id="gru-unit">
<h4>gru_unit<a class="headerlink" href="#gru-unit" title="永久链接至标题"></a></h4>
674
<dl class="function">
675
<dt>
676
<code class="descclassname">paddle.v2.networks.</code><code class="descname">gru_unit</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
677
<dd><p>Define calculations that a gated recurrent unit performs in a single time
678 679
step. This function itself is not a recurrent layer, so it can not be
directly used to process sequence inputs. This function is always used in
680 681 682 683 684 685 686 687
the recurrent_group (see layers.py for more details) to implement attention
mechanism.</p>
<p>Please see grumemory in layers.py for the details about the maths.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
688
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer name.</li>
689
<li><strong>memory_boot</strong> (<em>LayerOutput | None</em>) &#8211; the initialization state of the LSTM cell.</li>
690 691
<li><strong>name</strong> (<em>basestring</em>) &#8211; name of the gru group.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; hidden size of the gru.</li>
692 693 694
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; type of the activation</li>
<li><strong>gate_act</strong> (<em>BaseActivation</em>) &#8211; type of the gate activation</li>
<li><strong>gru_layer_attr</strong> (<em>ParameterAttribute|False</em>) &#8211; Extra parameter attribute of the gru layer.</li>
695 696 697 698 699 700
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">the gru output layer.</p>
</td>
</tr>
701
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
702 703 704 705 706 707 708 709 710
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="gru-group">
<h4>gru_group<a class="headerlink" href="#gru-group" title="永久链接至标题"></a></h4>
711
<dl class="function">
712
<dt>
713
<code class="descclassname">paddle.v2.networks.</code><code class="descname">gru_group</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
714
<dd><p>gru_group is a recurrent_group version of Gated Recurrent Unit. It
715 716 717 718 719 720 721 722 723
does exactly the same calculation as the grumemory layer does. A promising
benefit is that gru hidden states are accessible to the user. This is
especially useful in attention model. If you do not need to access
any internal state, but merely use the outputs of a GRU, it is recommended
to use the grumemory, which is relatively faster.</p>
<p>Please see grumemory in layers.py for more detail about the maths.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">gru</span> <span class="o">=</span> <span class="n">gur_group</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">layer1</span><span class="p">],</span>
                <span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span>
724 725
                <span class="n">act</span><span class="o">=</span><span class="n">TanhActivation</span><span class="p">(),</span>
                <span class="n">gate_act</span><span class="o">=</span><span class="n">SigmoidActivation</span><span class="p">())</span>
726 727 728 729 730 731 732
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
733
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer name.</li>
734
<li><strong>memory_boot</strong> (<em>LayerOutput | None</em>) &#8211; the initialization state of the LSTM cell.</li>
735 736 737
<li><strong>name</strong> (<em>basestring</em>) &#8211; name of the gru group.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; hidden size of the gru.</li>
<li><strong>reverse</strong> (<em>bool</em>) &#8211; whether to process the input data in a reverse order</li>
738 739 740 741
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; type of the activiation</li>
<li><strong>gate_act</strong> (<em>BaseActivation</em>) &#8211; type of the gate activiation</li>
<li><strong>gru_bias_attr</strong> (<em>ParameterAttribute|False</em>) &#8211; bias. False means no bias, None means default bias.</li>
<li><strong>gru_layer_attr</strong> (<em>ParameterAttribute|False</em>) &#8211; Extra parameter attribute of the gru layer.</li>
742 743 744 745 746 747
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">the gru group.</p>
</td>
</tr>
748
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
749 750 751 752 753 754 755 756 757
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="simple-gru">
<h4>simple_gru<a class="headerlink" href="#simple-gru" title="永久链接至标题"></a></h4>
758
<dl class="function">
759
<dt>
760 761
<code class="descclassname">paddle.v2.networks.</code><code class="descname">simple_gru</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>You maybe see gru_step_layer, grumemory in layers.py, gru_unit, gru_group,
762 763 764
simple_gru in network.py. The reason why there are so many interfaces is
that we have two ways to implement recurrent neural network. One way is to
use one complete layer to implement rnn (including simple rnn, gru and lstm)
765
with multiple time steps, such as recurrent_layer, lstmemory, grumemory. But,
766 767 768 769 770 771
the multiplication operation <span class="math">\(W x_t\)</span> is not computed in these layers.
See details in their interfaces in layers.py.
The other implementation is to use an recurrent group which can ensemble a
series of layers to compute rnn step by step. This way is flexible for
attenion mechanism or other complex connections.</p>
<ul class="simple">
772
<li>gru_step_layer: only compute rnn by one step. It needs an memory as input
773
and can be used in recurrent group.</li>
774
<li>gru_unit: a wrapper of gru_step_layer with memory.</li>
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
<li>gru_group: a GRU cell implemented by a combination of multiple layers in
recurrent group.
But <span class="math">\(W x_t\)</span> is not done in group.</li>
<li>gru_memory: a GRU cell implemented by one layer, which does same calculation
with gru_group and is faster than gru_group.</li>
<li>simple_gru: a complete GRU implementation inlcuding <span class="math">\(W x_t\)</span> and
gru_group. <span class="math">\(W\)</span> contains <span class="math">\(W_r\)</span>, <span class="math">\(W_z\)</span> and <span class="math">\(W\)</span>, see
formula in grumemory.</li>
</ul>
<p>The computational speed is that, grumemory is relatively better than
gru_group, and gru_group is relatively better than simple_gru.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">gru</span> <span class="o">=</span> <span class="n">simple_gru</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">layer1</span><span class="p">],</span> <span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
795
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer name.</li>
796 797 798
<li><strong>name</strong> (<em>basestring</em>) &#8211; name of the gru group.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; hidden size of the gru.</li>
<li><strong>reverse</strong> (<em>bool</em>) &#8211; whether to process the input data in a reverse order</li>
799 800 801 802
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; type of the activiation</li>
<li><strong>gate_act</strong> (<em>BaseActivation</em>) &#8211; type of the gate activiation</li>
<li><strong>gru_bias_attr</strong> (<em>ParameterAttribute|False</em>) &#8211; bias. False means no bias, None means default bias.</li>
<li><strong>gru_layer_attr</strong> (<em>ParameterAttribute|False</em>) &#8211; Extra parameter attribute of the gru layer.</li>
803 804 805 806 807 808
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">the gru group.</p>
</td>
</tr>
809
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
810 811 812 813 814 815 816 817 818
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="simple-gru2">
<h4>simple_gru2<a class="headerlink" href="#simple-gru2" title="永久链接至标题"></a></h4>
819
<dl class="function">
820
<dt>
821
<code class="descclassname">paddle.v2.networks.</code><code class="descname">simple_gru2</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
822 823 824 825 826 827 828 829 830 831 832 833
<dd><p>simple_gru2 is the same with simple_gru, but using grumemory instead
Please see grumemory in layers.py for more detail about the maths.
simple_gru2 is faster than simple_gru.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">gru</span> <span class="o">=</span> <span class="n">simple_gru2</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">layer1</span><span class="p">],</span> <span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
834
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer name.</li>
835 836 837
<li><strong>name</strong> (<em>basestring</em>) &#8211; name of the gru group.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; hidden size of the gru.</li>
<li><strong>reverse</strong> (<em>bool</em>) &#8211; whether to process the input data in a reverse order</li>
838 839 840 841
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; type of the activiation</li>
<li><strong>gate_act</strong> (<em>BaseActivation</em>) &#8211; type of the gate activiation</li>
<li><strong>gru_bias_attr</strong> (<em>ParameterAttribute|False</em>) &#8211; bias. False means no bias, None means default bias.</li>
<li><strong>gru_layer_attr</strong> (<em>ParameterAttribute|False</em>) &#8211; Extra parameter attribute of the gru layer.</li>
842 843 844 845 846 847
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">the gru group.</p>
</td>
</tr>
848
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
849 850 851 852 853 854 855 856 857
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="bidirectional-gru">
<h4>bidirectional_gru<a class="headerlink" href="#bidirectional-gru" title="永久链接至标题"></a></h4>
858
<dl class="function">
859
<dt>
860
<code class="descclassname">paddle.v2.networks.</code><code class="descname">bidirectional_gru</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
<dd><p>A bidirectional_gru is a recurrent unit that iterates over the input
sequence both in forward and bardward orders, and then concatenate two
outputs to form a final output. However, concatenation of two outputs
is not the only way to form the final output, you can also, for example,
just add them together.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">bi_gru</span> <span class="o">=</span> <span class="n">bidirectional_gru</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">input1</span><span class="p">],</span> <span class="n">size</span><span class="o">=</span><span class="mi">512</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; bidirectional gru layer name.</li>
876
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer.</li>
877 878 879 880 881 882 883 884 885
<li><strong>size</strong> (<em>int</em>) &#8211; gru layer size.</li>
<li><strong>return_seq</strong> (<em>bool</em>) &#8211; If set False, outputs of the last time step are
concatenated and returned.
If set True, the entire output sequences that are
processed in forward and backward directions are
concatenated and returned.</li>
</ul>
</td>
</tr>
886
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
887 888
</td>
</tr>
889
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
890 891 892 893 894 895 896 897 898 899
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="simple-attention">
<h3>simple_attention<a class="headerlink" href="#simple-attention" title="永久链接至标题"></a></h3>
900
<dl class="function">
901
<dt>
902
<code class="descclassname">paddle.v2.networks.</code><code class="descname">simple_attention</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
<dd><p>Calculate and then return a context vector by attention machanism.
Size of the context vector equals to size of the encoded_sequence.</p>
<div class="math">
\[ \begin{align}\begin{aligned}a(s_{i-1},h_{j}) &amp; = v_{a}f(W_{a}s_{t-1} + U_{a}h_{j})\\e_{i,j} &amp; = a(s_{i-1}, h_{j})\\a_{i,j} &amp; = \frac{exp(e_{i,j})}{\sum_{k=1}^{T_x}{exp(e_{i,k})}}\\c_{i} &amp; = \sum_{j=1}^{T_{x}}a_{i,j}h_{j}\end{aligned}\end{align} \]</div>
<p>where <span class="math">\(h_{j}\)</span> is the jth element of encoded_sequence,
<span class="math">\(U_{a}h_{j}\)</span> is the jth element of encoded_proj
<span class="math">\(s_{i-1}\)</span> is decoder_state
<span class="math">\(f\)</span> is weight_act, and is set to tanh by default.</p>
<p>Please refer to <strong>Neural Machine Translation by Jointly Learning to
Align and Translate</strong> for more details. The link is as follows:
<a class="reference external" href="https://arxiv.org/abs/1409.0473">https://arxiv.org/abs/1409.0473</a>.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">context</span> <span class="o">=</span> <span class="n">simple_attention</span><span class="p">(</span><span class="n">encoded_sequence</span><span class="o">=</span><span class="n">enc_seq</span><span class="p">,</span>
                           <span class="n">encoded_proj</span><span class="o">=</span><span class="n">enc_proj</span><span class="p">,</span>
                           <span class="n">decoder_state</span><span class="o">=</span><span class="n">decoder_prev</span><span class="p">,)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; name of the attention model.</li>
926
<li><strong>softmax_param_attr</strong> (<em>ParameterAttribute</em>) &#8211; parameter attribute of sequence softmax
927 928
that is used to produce attention weight</li>
<li><strong>weight_act</strong> (<em>Activation</em>) &#8211; activation of the attention model</li>
929 930
<li><strong>encoded_sequence</strong> (<em>LayerOutput</em>) &#8211; output of the encoder</li>
<li><strong>encoded_proj</strong> (<em>LayerOutput</em>) &#8211; attention weight is computed by a feed forward neural
931 932 933 934 935
network which has two inputs : decoder&#8217;s hidden state
of previous time step and encoder&#8217;s output.
encoded_proj is output of the feed-forward network for
encoder&#8217;s output. Here we pre-compute it outside
simple_attention for speed consideration.</li>
936 937
<li><strong>decoder_state</strong> (<em>LayerOutput</em>) &#8211; hidden state of decoder in previous time step</li>
<li><strong>transform_param_attr</strong> (<em>ParameterAttribute</em>) &#8211; parameter attribute of the feed-forward
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
network that takes decoder_state as inputs to
compute attention weight.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first last">a context vector</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
</div>


           </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
        <a href="attr.html" class="btn btn-neutral float-right" title="Parameter Attribute" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
      
      
        <a href="pooling.html" class="btn btn-neutral" title="Pooling" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
998 999
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
1000 1001 1002 1003 1004 1005
        };
    </script>
      <script type="text/javascript" src="../../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../../_static/doctools.js"></script>
      <script type="text/javascript" src="../../../_static/translations.js"></script>
1006
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
       
  

  
  
    <script type="text/javascript" src="../../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../../_static/js/paddle_doc_init.js"></script> 

</body>
</html>