batch_norm_kernel.cu 26.0 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/batch_norm_kernel.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"

#include "paddle/fluid/operators/norm_utils.cu.h"
#include "paddle/fluid/operators/norm_utils.h"

#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/operators/layout_utils.h"
#include "paddle/fluid/platform/enforce.h"

#include "paddle/fluid/platform/flags.h"
#include "paddle/phi/kernels/gpu/batch_norm_utils.h"

#ifdef __HIPCC__
#define LAUNCH_BOUNDS(BlockDim) __launch_bounds__(BlockDim)
#else
#define LAUNCH_BOUNDS(BlockDim)
#endif

DECLARE_bool(cudnn_batchnorm_spatial_persistent);

namespace phi {

template <typename T>
using CudnnDataType = paddle::platform::CudnnDataType<T>;
template <typename T>
using BatchNormParamType = typename CudnnDataType<T>::BatchNormParamType;

template <typename T, phi::DataLayout layout>
static __global__ void BNForwardInference(const T *x,
                                          const BatchNormParamType<T> *mean,
                                          const BatchNormParamType<T> *variance,
                                          const BatchNormParamType<T> *scale,
                                          const BatchNormParamType<T> *bias,
                                          const int C,
                                          const int N,
                                          const int HxW,
                                          const double epsilon,
                                          T *y) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  int num = N * C * HxW;
  for (int i = gid; i < num; i += stride) {
    const int c = layout == phi::DataLayout::kNCHW ? i / HxW % C : i % C;
    BatchNormParamType<T> x_sub_mean =
        static_cast<BatchNormParamType<T>>(x[i]) - mean[c];
    BatchNormParamType<T> inv_var = 1 / sqrt(variance[c] + epsilon);
    y[i] = static_cast<T>(scale[c] * x_sub_mean * inv_var + bias[c]);
  }
}

template <typename T, int BlockDim, phi::DataLayout layout>
static __global__ LAUNCH_BOUNDS(BlockDim) void BNForwardTraining(
    const T *x,
    const BatchNormParamType<T> *scale,
    const BatchNormParamType<T> *bias,
    const int C,
    const int N,
    const int HxW,
    const double epsilon,
    double exponentialAverageFactor,
    T *y,
    BatchNormParamType<T> *mean,
    BatchNormParamType<T> *variance,
    BatchNormParamType<T> *save_mean,
    BatchNormParamType<T> *save_inv_variance) {
  int outer_size = C;
  int inner_size = N * HxW;
  typedef cub::BlockReduce<BatchNormParamType<T>, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage mean_storage;
  __shared__ typename BlockReduce::TempStorage variance_storeage;
  __shared__ BatchNormParamType<T> mean_val;
  __shared__ BatchNormParamType<T> variance_val;
  __shared__ BatchNormParamType<T> inv_var_val;

  for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
    BatchNormParamType<T> x_sum = static_cast<BatchNormParamType<T>>(0);
    BatchNormParamType<T> x_square_sum = static_cast<BatchNormParamType<T>>(0);

    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == phi::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      BatchNormParamType<T> x_i = static_cast<BatchNormParamType<T>>(x[index]);
      x_sum += x_i;
      x_square_sum += x_i * x_i;
    }
    x_sum = BlockReduce(mean_storage).Reduce(x_sum, cub::Sum());
    x_square_sum =
        BlockReduce(variance_storeage).Reduce(x_square_sum, cub::Sum());
    if (threadIdx.x == 0) {
      mean_val = x_sum / inner_size;
      variance_val = x_square_sum / inner_size - mean_val * mean_val;
      inv_var_val = 1 / sqrt(variance_val + epsilon);

      if (save_mean && save_inv_variance) {
        save_mean[i] = mean_val;
        save_inv_variance[i] = inv_var_val;
      }
      mean[i] = (1 - exponentialAverageFactor) * mean_val +
                exponentialAverageFactor * mean[i];
      variance[i] = (1 - exponentialAverageFactor) * variance_val +
                    exponentialAverageFactor * variance[i];
    }
    __syncthreads();

    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == phi::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      BatchNormParamType<T> x_sub_mean =
          static_cast<BatchNormParamType<T>>(x[index]) - mean_val;
      y[index] = scale[i] * x_sub_mean * inv_var_val + bias[i];
    }
  }
}

template <typename T, typename Context>
void BatchNormKernel(const Context &ctx,
                     const DenseTensor &x,
                     const DenseTensor &scale,
                     const DenseTensor &bias,
                     const DenseTensor &mean,
                     const DenseTensor &variance,
                     float momentum,
                     float epsilon_f,
                     const std::string &data_layout_str,
                     bool is_test,
                     bool use_global_stats,
                     bool trainable_statistics,
                     bool fuse_with_relu,
                     DenseTensor *y,
                     DenseTensor *mean_out,
                     DenseTensor *variance_out,
                     DenseTensor *saved_mean,
                     DenseTensor *saved_variance,
                     DenseTensor *reserve_space) {
  double epsilon = epsilon_f;
  const bool trainable_stats = trainable_statistics;
  const DataLayout data_layout =
      paddle::framework::StringToDataLayout(data_layout_str);
  bool test_mode = is_test && (!trainable_stats);

  // Get the size for each dimension.
  // NCHW [batch_size, in_channels, in_height, in_width]
  const auto &x_dims = x.dims();
  PADDLE_ENFORCE_EQ(
      x_dims.size() >= 2 && x_dims.size() <= 5,
      true,
      phi::errors::InvalidArgument(
          "The size of input's dimensions should be between 2 and 5"
          "But received: the size of input's dimensions is [%d]",
          x_dims.size()));

  ctx.template Alloc<T>(y);
  int N, C, H, W, D;
  paddle::operators::ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);

  auto dtype = paddle::platform::CudnnDataType<T>::type;

#ifdef PADDLE_WITH_HIP
  auto compute_format =
      data_layout == DataLayout::kNHWC ? DataLayout::kNHWC : DataLayout::kNCHW;

// TODO(wangran16): wait for MIOpen to improve the performance of BN
// HIP do not support compute format of NHWC
// auto compute_format = DataLayout::kNCHW;
#else
  const bool fast_nhwc_batch_norm =
      test_mode ||
      (dtype == CUDNN_DATA_HALF && FLAGS_cudnn_batchnorm_spatial_persistent);

  auto compute_format = fast_nhwc_batch_norm && data_layout == DataLayout::kNHWC
                            ? DataLayout::kNHWC
                            : DataLayout::kNCHW;
#endif

  DenseTensor transformed_x(x.type());
  DenseTensor transformed_y(y->type());

  if (data_layout == DataLayout::kNHWC && compute_format == DataLayout::kNCHW &&
      x_dims.size() > 2) {
    VLOG(3) << "Transform input tensor from NHWC to NCHW.";
    ResizeToChannelFirst<Context, T>(ctx, &x, &transformed_x);
    TransToChannelFirst<Context, T>(ctx, &x, &transformed_x);
    ResizeToChannelFirst<Context, T>(ctx, y, &transformed_y);
  } else {
    transformed_x.ShareDataWith(x);
    transformed_y.ShareDataWith(*y);
  }

// ------------------- cudnn descriptors ---------------------
#ifdef PADDLE_WITH_HIP
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// miopenTensorDescriptor_t data_desc_;
// miopenTensorDescriptor_t bn_param_desc_;
// miopenBatchNormMode_t mode_;

// PADDLE_ENFORCE_GPU_SUCCESS(
//     platform::dynload::miopenCreateTensorDescriptor(&data_desc_));
// PADDLE_ENFORCE_GPU_SUCCESS(
//     platform::dynload::miopenCreateTensorDescriptor(&bn_param_desc_));
#else
  cudnnTensorDescriptor_t data_desc_;
  cudnnTensorDescriptor_t bn_param_desc_;
  cudnnBatchNormMode_t mode_;

  PADDLE_ENFORCE_GPU_SUCCESS(
      paddle::platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
  PADDLE_ENFORCE_GPU_SUCCESS(
      paddle::platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_));
#endif

  if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
    LOG(ERROR) << "Provided epsilon is smaller than "
               << "CUDNN_BN_MIN_EPSILON. Setting it to "
               << "CUDNN_BN_MIN_EPSILON instead.";
  }
  epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);

#ifdef PADDLE_WITH_HIP
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// mode_ = miopenBNSpatial;
#elif CUDNN_VERSION_MIN(7, 0, 1)
  if (FLAGS_cudnn_batchnorm_spatial_persistent) {
    mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
  } else if (H == 1 && W == 1) {
    mode_ = CUDNN_BATCHNORM_PER_ACTIVATION;
  } else {
    mode_ = CUDNN_BATCHNORM_SPATIAL;
  }
#else
  if (H == 1 && W == 1) {
    mode_ = CUDNN_BATCHNORM_PER_ACTIVATION;
  } else {
    mode_ = CUDNN_BATCHNORM_SPATIAL;
  }
#endif  // CUDNN_VERSION_MIN(7, 0, 1)

  VLOG(3) << "Setting descriptors.";
  std::vector<int> dims;
  std::vector<int> strides;
  if (compute_format == DataLayout::kNCHW) {
    dims = {N, C, H, W, D};
    strides = {C * H * W * D, H * W * D, W * D, D, 1};
  } else {
    dims = {N, C, H, W, D};
    strides = {H * W * D * C, 1, W * D * C, D * C, C};
  }

#ifdef PADDLE_WITH_HIP
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::miopenSetTensorDescriptor(
//     data_desc_, CudnnDataType<T>::type,
//     x_dims.size() > 3 ? x_dims.size() : 4, const_cast<int *>(dims.data()),
//     const_cast<int *>(strides.data())));
// Note: PERSISTENT not implemented for inference
// PADDLE_ENFORCE_GPU_SUCCESS(
//     platform::dynload::miopenDeriveBNTensorDescriptor(
//         bn_param_desc_, data_desc_, test_mode ? miopenBNSpatial : mode_));
#else
  PADDLE_ENFORCE_GPU_SUCCESS(
      paddle::platform::dynload::cudnnSetTensorNdDescriptor(
          data_desc_,
          CudnnDataType<T>::type,
          x_dims.size() > 3 ? x_dims.size() : 4,
          dims.data(),
          strides.data()));
  // Note: PERSISTENT not implemented for inference
  PADDLE_ENFORCE_GPU_SUCCESS(
      paddle::platform::dynload::cudnnDeriveBNTensorDescriptor(
          bn_param_desc_,
          data_desc_,
          test_mode ? CUDNN_BATCHNORM_SPATIAL : mode_));
#endif

  auto handle = ctx.cudnn_handle();

  // Now, depending on whether we are running test or not, we have two paths.
  // It is training mode when it's not reference AND not using pre-trained
  // model.
  bool training = !test_mode && !use_global_stats;
  if (!training) {
    // only when test we use input to do computation.
    const auto *est_mean = &mean;
    const auto *est_var = &variance;
    // Run inference mode.
    PADDLE_ENFORCE_EQ(
        est_mean->dims().size(),
        1UL,
        phi::errors::InvalidArgument(
            "The size of mean's dimensions must equal to 1."
            "But received: the size of mean's dimensions mean is [%d],"
            "the dimensions of mean is [%s].",
            est_mean->dims().size(),
            est_mean->dims()));
    PADDLE_ENFORCE_EQ(
        est_var->dims().size(),
        1UL,
        phi::errors::InvalidArgument(
            "The size of variance's dimensions must equal to 1."
            "But received: the size of variance's dimensions is [%d],"
            "the dimensions of variance is [%s].",
            est_var->dims().size(),
            est_var->dims()));
    PADDLE_ENFORCE_EQ(
        est_mean->dims()[0],
        C,
        phi::errors::InvalidArgument(
            "The first dimension of mean must equal to the number of "
            "Channels, which is [%d]. But received: the first dimension"
            "of mean is [%d], the dimensions of mean is [%s].",
            C,
            est_mean->dims()[0],
            est_mean->dims()));
    PADDLE_ENFORCE_EQ(
        est_var->dims()[0],
        C,
        phi::errors::InvalidArgument(
            "The first dimension of variance must equal to the number"
            "of Channels, which is [%d]. But received: the first dimension of"
            "variance is [%d], the dimensions of variance is [%s].",
            C,
            est_var->dims()[0],
            est_var->dims()));

#ifdef PADDLE_WITH_HIP
    const int block_size = 256;
    const int grid_size = (N * C * H * W * D + block_size - 1) / block_size;
    if (compute_format == DataLayout::kNCHW) {
      BNForwardInference<
          T,
          DataLayout::kNCHW><<<grid_size, block_size, 0, ctx.stream()>>>(
          transformed_x.template data<T>(),
          est_mean->template data<BatchNormParamType<T>>(),
          est_var->template data<BatchNormParamType<T>>(),
          scale.template data<BatchNormParamType<T>>(),
          bias.template data<BatchNormParamType<T>>(),
          C,
          N,
          H * W * D,
          epsilon,
          transformed_y.template data<T>());
    } else {
      BNForwardInference<
          T,
          DataLayout::kNHWC><<<grid_size, block_size, 0, ctx.stream()>>>(
          transformed_x.template data<T>(),
          est_mean->template data<BatchNormParamType<T>>(),
          est_var->template data<BatchNormParamType<T>>(),
          scale.template data<BatchNormParamType<T>>(),
          bias.template data<BatchNormParamType<T>>(),
          C,
          N,
          H * W * D,
          epsilon,
          transformed_y.template data<T>());
    }
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// PADDLE_ENFORCE_GPU_SUCCESS(
//     platform::dynload::miopenBatchNormalizationForwardInference(
//         handle, miopenBNSpatial,
//         const_cast<void *>(
//             static_cast<const void *>(CudnnDataType<T>::kOne())),
//         const_cast<void *>(
//             static_cast<const void *>(CudnnDataType<T>::kZero())),
//         data_desc_,
//         static_cast<const void *>(transformed_x.template data<T>()),
//         data_desc_,
//         static_cast<void *>(
//             transformed_y.template mutable_data<T>(ctx.GetPlace())),
//         bn_param_desc_,
//         const_cast<void *>(static_cast<const void *>(
//             scale->template data<BatchNormParamType<T>>())),
//         const_cast<void *>(static_cast<const void *>(
//             bias->template data<BatchNormParamType<T>>())),
//         const_cast<void *>(static_cast<const void *>(
//             est_mean->template data<BatchNormParamType<T>>())),
//         const_cast<void *>(static_cast<const void *>(
//             est_var->template data<BatchNormParamType<T>>())),
//         epsilon));
#else
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::cudnnBatchNormalizationForwardInference(
            handle,
            // Note: PERSISTENT not implemented for inference
            CUDNN_BATCHNORM_SPATIAL,
            CudnnDataType<T>::kOne(),
            CudnnDataType<T>::kZero(),
            data_desc_,
            transformed_x.template data<T>(),
            data_desc_,
            ctx.template Alloc<T>(&transformed_y),
            bn_param_desc_,
            scale.template data<BatchNormParamType<T>>(),
            bias.template data<BatchNormParamType<T>>(),
            est_mean->template data<BatchNormParamType<T>>(),
            est_var->template data<BatchNormParamType<T>>(),
            epsilon));
#endif
  } else {
    // if MomentumTensor is set, use MomentumTensor value, momentum
    // is only used in this training branch

    // need to solve here
    // if (ctx.HasInput("MomentumTensor")) {
    //   const auto *mom_tensor = MomentumTensor;
    //   DenseTensor mom_cpu;
    //   paddle::framework::TensorCopySync(*mom_tensor, platform::CPUPlace(),
    //                                     &mom_cpu);
    //   momentum = mom_cpu.data<float>()[0];
    // }

    // Run training mode.
    // obtain running mean and running inv var, and there is no need
    // to initialize them.
H
hong 已提交
442 443
    ctx.template Alloc<BatchNormParamType<T>>(mean_out);
    ctx.template Alloc<BatchNormParamType<T>>(variance_out);
H
hong 已提交
444

H
hong 已提交
445 446
    ctx.template Alloc<BatchNormParamType<T>>(saved_mean);
    ctx.template Alloc<BatchNormParamType<T>>(saved_variance);
H
hong 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462

    if ((N * H * W * D) == 1) {
      // Only 1 element in normalization dimension,
      // skip the batch norm calculation, let y = x.
      paddle::framework::TensorCopy(x, ctx.GetPlace(), y);
    } else {
      double this_factor = 1. - momentum;

      bool called = false;
#if CUDNN_VERSION_MIN(7, 4, 1)
      called = true;
      size_t workspace_size = 0;
      size_t reserve_space_size = 0;
      void *reserve_space_ptr = nullptr;
      void *workspace_ptr = nullptr;
      DenseTensor workspace_tensor;
463
      DenseTensor reserve_space_tensor;
H
hong 已提交
464 465 466 467
      // Create reserve space and workspace for batch norm.
      // Create tensor for each batchnorm op, it will be used in the
      // backward. Thus this tensor shouldn't be temp.
      // auto *reserve_space = ctx.Output<Tensor>("ReserveSpace");
468 469 470
      if (reserve_space == nullptr) {
        reserve_space = &reserve_space_tensor;
      }
H
hong 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
      PADDLE_ENFORCE_NOT_NULL(
          reserve_space,
          phi::errors::NotFound(
              "The argument ReserveSpace of batch_norm op is not found."));
      // --------------- cudnn batchnorm workspace ---------------
      PADDLE_ENFORCE_GPU_SUCCESS(
          paddle::platform::dynload::
              cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize(
                  /*handle=*/handle,
                  /*mode=*/mode_,
                  /*bnIps=*/CUDNN_BATCHNORM_OPS_BN,
                  /*xDesc=*/data_desc_,
                  /*zDesc=*/nullptr,
                  /*yDesc=*/data_desc_,
                  /*bnScaleBiasMeanVarDesc=*/bn_param_desc_,
                  /*activationDesc=*/nullptr,
                  /*sizeInBytes=*/&workspace_size));

      // -------------- cudnn batchnorm reserve space --------------
      PADDLE_ENFORCE_GPU_SUCCESS(
          paddle::platform::dynload::
              cudnnGetBatchNormalizationTrainingExReserveSpaceSize(
                  /*handle=*/handle,
                  /*mode=*/mode_,
                  /*bnOps=*/CUDNN_BATCHNORM_OPS_BN,
                  /*activationDesc=*/nullptr,
                  /*xDesc=*/data_desc_,
                  /*sizeInBytes=*/&reserve_space_size));

H
hong 已提交
500 501 502 503
      reserve_space->Resize({static_cast<int64_t>(reserve_space_size)});
      reserve_space_ptr = ctx.template Alloc<T>(reserve_space);
      workspace_tensor.Resize({static_cast<int64_t>(workspace_size)});
      workspace_ptr = ctx.template Alloc<T>(&workspace_tensor);
H
hong 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
      PADDLE_ENFORCE_GPU_SUCCESS(
          paddle::platform::dynload::cudnnBatchNormalizationForwardTrainingEx(
              handle,
              mode_,
              CUDNN_BATCHNORM_OPS_BN,
              CudnnDataType<T>::kOne(),
              CudnnDataType<T>::kZero(),
              data_desc_,
              transformed_x.template data<T>(),
              nullptr,
              nullptr,
              data_desc_,
              transformed_y.template data<T>(),
              bn_param_desc_,
              scale.template data<BatchNormParamType<T>>(),
              bias.template data<BatchNormParamType<T>>(),
              this_factor,
H
hong 已提交
521 522
              ctx.template Alloc<BatchNormParamType<T>>(mean_out),
              ctx.template Alloc<BatchNormParamType<T>>(variance_out),
H
hong 已提交
523
              epsilon,
H
hong 已提交
524 525
              ctx.template Alloc<BatchNormParamType<T>>(saved_mean),
              ctx.template Alloc<BatchNormParamType<T>>(saved_variance),
H
hong 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
              nullptr,
              workspace_ptr,
              workspace_size,
              reserve_space_ptr,
              reserve_space_size));
#endif  // CUDNN_VERSION_MIN(7, 4, 1)
      if (!called) {
#ifdef PADDLE_WITH_HIP
        const int num = transformed_x.numel();
        const int block = 256;
        const int max_threads = ctx.GetMaxPhysicalThreadCount();
        const int max_blocks = std::max(max_threads / block, 1);
        const int grid = std::min(C, max_blocks);
        if (compute_format == DataLayout::kNCHW) {
          BNForwardTraining<
              T,
              block,
              DataLayout::kNCHW><<<grid, block, 0, ctx.stream()>>>(
              transformed_x.template data<T>(),
              scale.template data<BatchNormParamType<T>>(),
              bias.template data<BatchNormParamType<T>>(),
              C,
              N,
              H * W * D,
              epsilon,
              this_factor,
              transformed_y.template data<T>(),
              mean_out->template data<BatchNormParamType<T>>(),
              variance_out->template data<BatchNormParamType<T>>(),
              saved_mean->template data<BatchNormParamType<T>>(),
              saved_variance->template data<BatchNormParamType<T>>());
        } else {
          BNForwardTraining<
              T,
              block,
              DataLayout::kNHWC><<<grid, block, 0, ctx.stream()>>>(
              transformed_x.template data<T>(),
              scale.template data<BatchNormParamType<T>>(),
              bias.template data<BatchNormParamType<T>>(),
              C,
              N,
              H * W * D,
              epsilon,
              this_factor,
              transformed_y.template data<T>(),
              mean_out->template data<BatchNormParamType<T>>(),
              variance_out->template data<BatchNormParamType<T>>(),
              saved_mean->template data<BatchNormParamType<T>>(),
              saved_variance->template data<BatchNormParamType<T>>());
        }
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// PADDLE_ENFORCE_GPU_SUCCESS(
//     platform::dynload::miopenBatchNormalizationForwardTraining(
//         handle, mode_, const_cast<void *>(static_cast<const void *>(
//                            CudnnDataType<T>::kOne())),
//         const_cast<void *>(
//             static_cast<const void *>(CudnnDataType<T>::kZero())),
//         data_desc_,
//         static_cast<const void *>(transformed_x.template data<T>()),
//         data_desc_,
//         static_cast<void *>(
//             transformed_y.template mutable_data<T>(ctx.GetPlace())),
//         bn_param_desc_,
//         const_cast<void *>(static_cast<const void *>(
//             scale->template data<BatchNormParamType<T>>())),
//         const_cast<void *>(static_cast<const void *>(
//             bias->template data<BatchNormParamType<T>>())),
//         this_factor,
//         static_cast<void *>(
//             mean_out->template mutable_data<BatchNormParamType<T>>(
//                 ctx.GetPlace())),
//         static_cast<void *>(variance_out->template mutable_data<
//                             BatchNormParamType<T>>(ctx.GetPlace())),
//         epsilon,
//         static_cast<void *>(
//             saved_mean->template mutable_data<BatchNormParamType<T>>(
//                 ctx.GetPlace())),
//         static_cast<void *>(saved_variance->template mutable_data<
//                             BatchNormParamType<T>>(ctx.GetPlace()))));
#else
        PADDLE_ENFORCE_GPU_SUCCESS(
            paddle::platform::dynload::cudnnBatchNormalizationForwardTraining(
                handle,
                mode_,
                CudnnDataType<T>::kOne(),
                CudnnDataType<T>::kZero(),
                data_desc_,
                transformed_x.template data<T>(),
                data_desc_,
                ctx.template Alloc<T>(&transformed_y),
                bn_param_desc_,
                scale.template data<BatchNormParamType<T>>(),
                bias.template data<BatchNormParamType<T>>(),
                this_factor,
H
hong 已提交
620 621
                ctx.template Alloc<BatchNormParamType<T>>(mean_out),
                ctx.template Alloc<BatchNormParamType<T>>(variance_out),
H
hong 已提交
622
                epsilon,
H
hong 已提交
623 624
                ctx.template Alloc<BatchNormParamType<T>>(saved_mean),
                ctx.template Alloc<BatchNormParamType<T>>(saved_variance)));
H
hong 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
#endif
      }
    }
  }

  if (data_layout == DataLayout::kNHWC && compute_format == DataLayout::kNCHW &&
      x_dims.size() > 2) {
    VLOG(3) << "Transform batchnorm output from NCHW to NHWC";
    TransToChannelLast<Context, T>(ctx, &transformed_y, y);
  }
#ifdef PADDLE_WITH_HIP
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// clean when exit.
// PADDLE_ENFORCE_GPU_SUCCESS(
//     platform::dynload::miopenDestroyTensorDescriptor(data_desc_));
// PADDLE_ENFORCE_GPU_SUCCESS(
//     platform::dynload::miopenDestroyTensorDescriptor(bn_param_desc_));
#else
  // clean when exit.
  PADDLE_ENFORCE_GPU_SUCCESS(
      paddle::platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
  PADDLE_ENFORCE_GPU_SUCCESS(
      paddle::platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_));
#endif
}

}  // namespace phi

#ifdef PADDLE_WITH_HIP
PD_REGISTER_KERNEL(batch_norm,
                   GPU,
                   ALL_LAYOUT,
                   phi::BatchNormKernel,
                   float,
                   phi::dtype::float16) {}
#else
PD_REGISTER_KERNEL(batch_norm,
                   GPU,
                   ALL_LAYOUT,
                   phi::BatchNormKernel,
                   float,
                   double,
                   phi::dtype::float16) {
  if (kernel_key.dtype() == phi::DataType::FLOAT16) {
    kernel->OutputAt(1).SetDataType(phi::DataType::FLOAT32);
    kernel->OutputAt(2).SetDataType(phi::DataType::FLOAT32);
    kernel->OutputAt(3).SetDataType(phi::DataType::FLOAT32);
    kernel->OutputAt(4).SetDataType(phi::DataType::FLOAT32);
  }
}

#endif