batch_norm_utils.h 4.9 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace phi {

using Tensor = DenseTensor;

template <typename DeviceContext, typename T>
inline void ResizeToChannelFirst(const DeviceContext& context,
                                 const Tensor* input,
                                 Tensor* transformed_input) {
  int dim = input->dims().size() - 2;
  if (dim == 3) {
    // input
    transformed_input->Resize(input->dims());

    auto in_dims_vec = vectorize(input->dims());
    in_dims_vec[1] = input->dims()[4];
    in_dims_vec[2] = input->dims()[1];
    in_dims_vec[3] = input->dims()[2];
    in_dims_vec[4] = input->dims()[3];
    transformed_input->Resize(make_ddim(in_dims_vec));
H
hong 已提交
39
    context.template Alloc<T>(transformed_input);
H
hong 已提交
40 41 42 43 44 45 46 47 48
  } else if (dim == 2) {
    // input
    transformed_input->Resize(input->dims());

    auto in_dims_vec = vectorize(input->dims());
    in_dims_vec[1] = input->dims()[3];
    in_dims_vec[2] = input->dims()[1];
    in_dims_vec[3] = input->dims()[2];
    transformed_input->Resize(make_ddim(in_dims_vec));
H
hong 已提交
49
    context.template Alloc<T>(transformed_input);
H
hong 已提交
50 51 52 53 54 55 56
  } else if (dim == 1) {
    transformed_input->Resize(input->dims());

    auto in_dims_vec = vectorize(input->dims());
    in_dims_vec[1] = input->dims()[2];
    in_dims_vec[2] = input->dims()[1];
    transformed_input->Resize(make_ddim(in_dims_vec));
H
hong 已提交
57
    context.template Alloc<T>(transformed_input);
H
hong 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
  }
}

template <typename DeviceContext, typename T>
inline void ResizeToChannelLast(const DeviceContext& context,
                                const Tensor* input,
                                Tensor* transformed_input) {
  int dim = input->dims().size() - 2;
  if (dim == 3) {
    // input
    transformed_input->Resize(input->dims());

    auto in_dims_vec = vectorize(input->dims());
    in_dims_vec[1] = input->dims()[2];
    in_dims_vec[2] = input->dims()[3];
    in_dims_vec[3] = input->dims()[4];
    in_dims_vec[4] = input->dims()[1];
    transformed_input->Resize(make_ddim(in_dims_vec));
H
hong 已提交
76
    context.template Alloc<T>(transformed_input);
H
hong 已提交
77 78 79 80 81 82 83 84 85 86

  } else if (dim == 2) {
    // input
    transformed_input->Resize(input->dims());

    auto in_dims_vec = vectorize(input->dims());
    in_dims_vec[1] = input->dims()[2];
    in_dims_vec[2] = input->dims()[3];
    in_dims_vec[3] = input->dims()[1];
    transformed_input->Resize(make_ddim(in_dims_vec));
H
hong 已提交
87
    context.template Alloc<T>(transformed_input);
H
hong 已提交
88 89 90 91 92 93 94
  } else if (dim == 1) {
    transformed_input->Resize(input->dims());

    auto in_dims_vec = vectorize(input->dims());
    in_dims_vec[1] = input->dims()[2];
    in_dims_vec[2] = input->dims()[1];
    transformed_input->Resize(make_ddim(in_dims_vec));
H
hong 已提交
95
    context.template Alloc<T>(transformed_input);
H
hong 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
  }
}

template <typename DeviceContext, typename T>
inline void TransToChannelFirst(const DeviceContext& context,
                                const Tensor* input,
                                Tensor* transformed_input) {
  VLOG(5) << "Why am I called?";
  int dim = input->dims().size() - 2;
  if (dim == 3) {
    std::vector<int> axis{0, 4, 1, 2, 3};
    phi::funcs::Transpose<DeviceContext, T, 5> trans5;
    trans5(context, *input, transformed_input, axis);

  } else if (dim == 2) {
    std::vector<int> axis{0, 3, 1, 2};
    phi::funcs::Transpose<DeviceContext, T, 4> trans4;
    trans4(context, *input, transformed_input, axis);
  } else if (dim == 1) {
    std::vector<int> axis{0, 2, 1};
    phi::funcs::Transpose<DeviceContext, T, 3> trans3;
    trans3(context, *input, transformed_input, axis);
  }
}

template <typename DeviceContext, typename T>
inline void TransToChannelLast(const DeviceContext& context,
                               const Tensor* input,
                               Tensor* transformed_input) {
  int dim = input->dims().size() - 2;
  if (dim == 3) {
    std::vector<int> axis{0, 2, 3, 4, 1};
    phi::funcs::Transpose<DeviceContext, T, 5> trans5;
    trans5(context, *input, transformed_input, axis);

  } else if (dim == 2) {
    std::vector<int> axis{0, 2, 3, 1};
    phi::funcs::Transpose<DeviceContext, T, 4> trans4;
    trans4(context, *input, transformed_input, axis);
  } else if (dim == 1) {
    std::vector<int> axis{0, 2, 1};
    phi::funcs::Transpose<DeviceContext, T, 3> trans3;
    trans3(context, *input, transformed_input, axis);
  }
}

}  // namespace phi