data_feed.cc 97.3 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

D
dongdaxiang 已提交
15 16 17 18 19
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

20
#include "paddle/fluid/framework/data_feed.h"
T
Thunderbrook 已提交
21
#include "paddle/fluid/framework/fleet/ps_gpu_wrapper.h"
D
dongdaxiang 已提交
22
#ifdef _LINUX
D
dongdaxiang 已提交
23
#include <stdio_ext.h>
H
hutuxian 已提交
24 25
#include <sys/mman.h>
#include <sys/stat.h>
D
dongdaxiang 已提交
26
#endif
27
#include "io/fs.h"
H
hutuxian 已提交
28
#include "paddle/fluid/platform/monitor.h"
29
#include "paddle/fluid/platform/timer.h"
W
Wang Guibao 已提交
30

H
hutuxian 已提交
31
USE_INT_STAT(STAT_total_feasign_num_in_mem);
Y
yaoxuefeng 已提交
32
DECLARE_bool(enable_ins_parser_file);
W
Wang Guibao 已提交
33 34 35
namespace paddle {
namespace framework {

T
Thunderbrook 已提交
36 37 38 39 40
DLManager& global_dlmanager_pool() {
  static DLManager manager;
  return manager;
}

Y
yaoxuefeng 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
class BufferedLineFileReader {
  typedef std::function<bool()> SampleFunc;
  static const int MAX_FILE_BUFF_SIZE = 4 * 1024 * 1024;
  class FILEReader {
   public:
    explicit FILEReader(FILE* fp) : fp_(fp) {}
    int read(char* buf, int len) { return fread(buf, sizeof(char), len, fp_); }

   private:
    FILE* fp_;
  };

 public:
  typedef std::function<bool(const std::string&)> LineFunc;

 private:
  template <typename T>
  int read_lines(T* reader, LineFunc func, int skip_lines) {
    int lines = 0;
    size_t ret = 0;
    char* ptr = NULL;
    char* eol = NULL;
    total_len_ = 0;
    error_line_ = 0;

    SampleFunc spfunc = get_sample_func();
    std::string x;
    while (!is_error() && (ret = reader->read(buff_, MAX_FILE_BUFF_SIZE)) > 0) {
      total_len_ += ret;
      ptr = buff_;
      eol = reinterpret_cast<char*>(memchr(ptr, '\n', ret));
      while (eol != NULL) {
        int size = static_cast<int>((eol - ptr) + 1);
        x.append(ptr, size - 1);
        ++lines;
        if (lines > skip_lines && spfunc()) {
          if (!func(x)) {
            ++error_line_;
          }
        }

        x.clear();
        ptr += size;
        ret -= size;
        eol = reinterpret_cast<char*>(memchr(ptr, '\n', ret));
      }
      if (ret > 0) {
        x.append(ptr, ret);
      }
    }
    if (!is_error() && !x.empty()) {
      ++lines;
      if (lines > skip_lines && spfunc()) {
        if (!func(x)) {
          ++error_line_;
        }
      }
    }
    return lines;
  }

 public:
  BufferedLineFileReader()
      : random_engine_(std::random_device()()),
        uniform_distribution_(0.0f, 1.0f) {
    total_len_ = 0;
    sample_line_ = 0;
    buff_ =
        reinterpret_cast<char*>(calloc(MAX_FILE_BUFF_SIZE + 1, sizeof(char)));
  }
  ~BufferedLineFileReader() { free(buff_); }

  int read_file(FILE* fp, LineFunc func, int skip_lines) {
    FILEReader reader(fp);
    return read_lines<FILEReader>(&reader, func, skip_lines);
  }
  uint64_t file_size(void) { return total_len_; }
  void set_sample_rate(float r) { sample_rate_ = r; }
  size_t get_sample_line() { return sample_line_; }
  bool is_error(void) { return (error_line_ > 10); }

 private:
  SampleFunc get_sample_func() {
    if (std::abs(sample_rate_ - 1.0f) < 1e-5f) {
      return [this](void) { return true; };
    }
    return [this](void) {
      return (uniform_distribution_(random_engine_) < sample_rate_);
    };
  }

 private:
  char* buff_ = nullptr;
  uint64_t total_len_ = 0;

  std::default_random_engine random_engine_;
  std::uniform_real_distribution<float> uniform_distribution_;
  float sample_rate_ = 1.0f;
  size_t sample_line_ = 0;
  size_t error_line_ = 0;
};
142
void RecordCandidateList::ReSize(size_t length) {
143 144 145 146 147 148 149 150 151
  mutex_.lock();
  capacity_ = length;
  CHECK(capacity_ > 0);  // NOLINT
  candidate_list_.clear();
  candidate_list_.resize(capacity_);
  full_ = false;
  cur_size_ = 0;
  total_size_ = 0;
  mutex_.unlock();
152 153 154
}

void RecordCandidateList::ReInit() {
155 156 157 158 159
  mutex_.lock();
  full_ = false;
  cur_size_ = 0;
  total_size_ = 0;
  mutex_.unlock();
160 161 162 163
}

void RecordCandidateList::AddAndGet(const Record& record,
                                    RecordCandidate* result) {
164
  mutex_.lock();
165
  size_t index = 0;
166
  ++total_size_;
167
  auto fleet_ptr = FleetWrapper::GetInstance();
168 169 170
  if (!full_) {
    candidate_list_[cur_size_++] = record;
    full_ = (cur_size_ == capacity_);
171
  } else {
172 173 174 175
    CHECK(cur_size_ == capacity_);
    index = fleet_ptr->LocalRandomEngine()() % total_size_;
    if (index < capacity_) {
      candidate_list_[index] = record;
176 177
    }
  }
178 179 180
  index = fleet_ptr->LocalRandomEngine()() % cur_size_;
  *result = candidate_list_[index];
  mutex_.unlock();
181 182
}

W
Wang Guibao 已提交
183 184 185 186
void DataFeed::AddFeedVar(Variable* var, const std::string& name) {
  CheckInit();
  for (size_t i = 0; i < use_slots_.size(); ++i) {
    if (name == use_slots_[i]) {
187 188 189 190 191
      if (var == nullptr) {
        feed_vec_[i] = nullptr;
      } else {
        feed_vec_[i] = var->GetMutable<LoDTensor>();
      }
W
Wang Guibao 已提交
192 193 194 195 196
    }
  }
}

bool DataFeed::SetFileList(const std::vector<std::string>& files) {
197
  std::unique_lock<std::mutex> lock(*mutex_for_pick_file_);
W
Wang Guibao 已提交
198
  CheckInit();
199 200
  // Do not set finish_set_filelist_ flag,
  // since a user may set file many times after init reader
W
Wang Guibao 已提交
201 202 203 204 205 206 207
  filelist_.assign(files.begin(), files.end());

  finish_set_filelist_ = true;
  return true;
}

void DataFeed::SetBatchSize(int batch_size) {
208 209 210
  PADDLE_ENFORCE_GT(batch_size, 0,
                    platform::errors::InvalidArgument(
                        "Batch size %d is illegal.", batch_size));
W
Wang Guibao 已提交
211 212 213 214
  default_batch_size_ = batch_size;
}

bool DataFeed::PickOneFile(std::string* filename) {
215 216 217 218 219 220 221
  PADDLE_ENFORCE_NOT_NULL(
      mutex_for_pick_file_,
      platform::errors::PreconditionNotMet(
          "You should call SetFileListMutex before PickOneFile"));
  PADDLE_ENFORCE_NOT_NULL(
      file_idx_, platform::errors::PreconditionNotMet(
                     "You should call SetFileListIndex before PickOneFile"));
222
  std::unique_lock<std::mutex> lock(*mutex_for_pick_file_);
223
  VLOG(4) << "filelist_ size: " << filelist_.size();
224
  if (*file_idx_ == filelist_.size()) {
225
    VLOG(3) << "DataFeed::PickOneFile no more file to pick";
W
Wang Guibao 已提交
226 227
    return false;
  }
228 229
  VLOG(3) << "file_idx_=" << *file_idx_;
  *filename = filelist_[(*file_idx_)++];
W
Wang Guibao 已提交
230 231 232 233
  return true;
}

void DataFeed::CheckInit() {
234 235
  PADDLE_ENFORCE_EQ(finish_init_, true, platform::errors::PreconditionNotMet(
                                            "DataFeed initialization failed."));
W
Wang Guibao 已提交
236 237 238
}

void DataFeed::CheckSetFileList() {
239 240 241
  PADDLE_ENFORCE_EQ(
      finish_set_filelist_, true,
      platform::errors::PreconditionNotMet("DataFeed set filelist failed."));
W
Wang Guibao 已提交
242 243 244
}

void DataFeed::CheckStart() {
245 246 247
  PADDLE_ENFORCE_EQ(finish_start_, true,
                    platform::errors::PreconditionNotMet(
                        "Datafeed has not started running yet."));
W
Wang Guibao 已提交
248 249
}

H
hutuxian 已提交
250 251 252 253 254 255 256
void DataFeed::AssignFeedVar(const Scope& scope) {
  CheckInit();
  for (size_t i = 0; i < use_slots_.size(); ++i) {
    feed_vec_[i] = scope.FindVar(use_slots_[i])->GetMutable<LoDTensor>();
  }
}

257 258 259 260 261 262
void DataFeed::CopyToFeedTensor(void* dst, const void* src, size_t size) {
  if (platform::is_cpu_place(this->place_)) {
    memcpy(dst, src, size);
  } else {
#ifdef PADDLE_WITH_CUDA
    cudaMemcpy(dst, src, size, cudaMemcpyHostToDevice);
263 264
#elif defined(PADDLE_WITH_HIP)
    hipMemcpy(dst, src, size, hipMemcpyHostToDevice);
265 266
#elif defined(PADDLE_WITH_XPU_KP)
    xpu_memcpy(dst, src, size, XPUMemcpyKind::XPU_HOST_TO_DEVICE);
267
#else
268
    PADDLE_THROW(platform::errors::Unimplemented(
269 270
        "Not supported GPU/ROCM, please compile with option WITH_GPU=ON or "
        "WITH_ROCM=ON."));
271 272 273 274
#endif
  }
}

W
Wang Guibao 已提交
275 276
template <typename T>
void PrivateQueueDataFeed<T>::SetQueueSize(int queue_size) {
277 278 279 280
  PADDLE_ENFORCE_GT(
      queue_size, 0,
      platform::errors::InvalidArgument(
          "Queue size %d is illegal in PrivateQueueDataFeed.", queue_size));
W
Wang Guibao 已提交
281
  queue_size_ = queue_size;
282
  queue_ = paddle::framework::MakeChannel<T>();
J
jiaqi 已提交
283
  queue_->SetCapacity(queue_size);
W
Wang Guibao 已提交
284 285 286 287
}

template <typename T>
bool PrivateQueueDataFeed<T>::Start() {
288
  VLOG(4) << "entering PrivateQueueDataFeed<T>::Start()";
W
Wang Guibao 已提交
289
  CheckSetFileList();
290 291
  read_thread_ = std::thread(&PrivateQueueDataFeed::ReadThread, this);
  read_thread_.detach();
W
Wang Guibao 已提交
292 293 294 295 296 297 298

  finish_start_ = true;
  return true;
}

template <typename T>
void PrivateQueueDataFeed<T>::ReadThread() {
D
dongdaxiang 已提交
299
#ifdef _LINUX
300
  VLOG(4) << "entering PrivateQueueDataFeed<T>::ReadThread()";
301 302 303 304 305 306 307
  std::string filename;
  while (PickOneFile(&filename)) {
    int err_no = 0;
    fp_ = fs_open_read(filename, &err_no, pipe_command_);
    __fsetlocking(&*fp_, FSETLOCKING_BYCALLER);
    T instance;
    while (ParseOneInstanceFromPipe(&instance)) {
308
      queue_->Put(instance);
309
    }
W
Wang Guibao 已提交
310
  }
311
  queue_->Close();
D
dongdaxiang 已提交
312
#endif
W
Wang Guibao 已提交
313 314 315 316
}

template <typename T>
int PrivateQueueDataFeed<T>::Next() {
X
xjqbest 已提交
317
#ifdef _LINUX
W
Wang Guibao 已提交
318 319 320 321
  CheckStart();
  int index = 0;
  T ins_vec;
  while (index < default_batch_size_) {
322 323
    T instance;
    if (!queue_->Get(instance)) {
W
Wang Guibao 已提交
324 325 326 327 328 329 330 331 332
      break;
    }
    AddInstanceToInsVec(&ins_vec, instance, index++);
  }
  batch_size_ = index;
  if (batch_size_ != 0) {
    PutToFeedVec(ins_vec);
  }
  return batch_size_;
X
xjqbest 已提交
333 334 335
#else
  return 0;
#endif
W
Wang Guibao 已提交
336 337
}

338
// explicit instantiation
W
Wang Guibao 已提交
339 340
template class PrivateQueueDataFeed<std::vector<MultiSlotType>>;

341 342
template <typename T>
InMemoryDataFeed<T>::InMemoryDataFeed() {
343 344
  this->file_idx_ = nullptr;
  this->mutex_for_pick_file_ = nullptr;
J
jiaqi 已提交
345 346 347
  this->fp_ = nullptr;
  this->thread_id_ = 0;
  this->thread_num_ = 1;
348
  this->parse_ins_id_ = false;
349
  this->parse_uid_ = false;
350
  this->parse_content_ = false;
351 352 353
  this->parse_logkey_ = false;
  this->enable_pv_merge_ = false;
  this->current_phase_ = 1;  // 1:join ;0:update
J
jiaqi 已提交
354 355 356
  this->input_channel_ = nullptr;
  this->output_channel_ = nullptr;
  this->consume_channel_ = nullptr;
357 358 359 360
}

template <typename T>
bool InMemoryDataFeed<T>::Start() {
X
xjqbest 已提交
361
#ifdef _LINUX
362
  VLOG(4) << "entering InMemoryDataFeed<T>::Start()";
J
jiaqi 已提交
363 364 365 366 367
  this->CheckSetFileList();
  if (output_channel_->Size() == 0 && input_channel_->Size() != 0) {
    std::vector<T> data;
    input_channel_->Read(data);
    output_channel_->Write(std::move(data));
368
  }
X
xjqbest 已提交
369
#endif
Y
yaoxuefeng 已提交
370 371 372 373 374
  if (batch_offsets_.size() > 0) {
    VLOG(3) << "batch_size offsets: " << batch_offsets_.size();
    enable_heterps_ = true;
    this->offset_index_ = 0;
  }
J
jiaqi 已提交
375
  this->finish_start_ = true;
376 377 378 379 380
  return true;
}

template <typename T>
int InMemoryDataFeed<T>::Next() {
X
xjqbest 已提交
381
#ifdef _LINUX
J
jiaqi 已提交
382
  this->CheckStart();
Y
yaoxuefeng 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
  if (!enable_heterps_) {
    CHECK(output_channel_ != nullptr);
    CHECK(consume_channel_ != nullptr);
    VLOG(3) << "output_channel_ size=" << output_channel_->Size()
            << ", consume_channel_ size=" << consume_channel_->Size()
            << ", thread_id=" << thread_id_;
    int index = 0;
    T instance;
    std::vector<T> ins_vec;
    ins_vec.reserve(this->default_batch_size_);
    while (index < this->default_batch_size_) {
      if (output_channel_->Size() == 0) {
        break;
      }
      output_channel_->Get(instance);
      ins_vec.push_back(instance);
      ++index;
      consume_channel_->Put(std::move(instance));
    }
    this->batch_size_ = index;
    VLOG(3) << "batch_size_=" << this->batch_size_
            << ", thread_id=" << thread_id_;
    if (this->batch_size_ != 0) {
      PutToFeedVec(ins_vec);
    } else {
      VLOG(3) << "finish reading, output_channel_ size="
              << output_channel_->Size()
              << ", consume_channel_ size=" << consume_channel_->Size()
              << ", thread_id=" << thread_id_;
412
    }
D
dongdaxiang 已提交
413
  } else {
Y
yaoxuefeng 已提交
414
    VLOG(3) << "enable heter next: " << offset_index_
Y
yaoxuefeng 已提交
415 416 417 418 419 420 421 422 423
            << " batch_offsets: " << batch_offsets_.size();
    if (offset_index_ >= batch_offsets_.size()) {
      VLOG(3) << "offset_index: " << offset_index_
              << " batch_offsets: " << batch_offsets_.size();
      return 0;
    }
    auto& batch = batch_offsets_[offset_index_++];
    this->batch_size_ = batch.second;
    VLOG(3) << "batch_size_=" << this->batch_size_
J
jiaqi 已提交
424
            << ", thread_id=" << thread_id_;
Y
yaoxuefeng 已提交
425 426 427 428 429 430
    if (this->batch_size_ != 0) {
      PutToFeedVec(&records_[batch.first], this->batch_size_);
    } else {
      VLOG(3) << "finish reading for heterps, batch size zero, thread_id="
              << thread_id_;
    }
Y
yaoxuefeng 已提交
431
    VLOG(3) << "enable heter next: " << offset_index_
Y
yaoxuefeng 已提交
432 433
            << " batch_offsets: " << batch_offsets_.size()
            << " baych_size: " << this->batch_size_;
D
dongdaxiang 已提交
434
  }
J
jiaqi 已提交
435
  return this->batch_size_;
X
xjqbest 已提交
436 437 438
#else
  return 0;
#endif
439 440
}

441
template <typename T>
J
jiaqi 已提交
442 443 444 445 446 447 448
void InMemoryDataFeed<T>::SetInputChannel(void* channel) {
  input_channel_ = static_cast<paddle::framework::ChannelObject<T>*>(channel);
}

template <typename T>
void InMemoryDataFeed<T>::SetOutputChannel(void* channel) {
  output_channel_ = static_cast<paddle::framework::ChannelObject<T>*>(channel);
449 450 451
}

template <typename T>
J
jiaqi 已提交
452 453
void InMemoryDataFeed<T>::SetConsumeChannel(void* channel) {
  consume_channel_ = static_cast<paddle::framework::ChannelObject<T>*>(channel);
454 455
}

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
template <typename T>
void InMemoryDataFeed<T>::SetInputPvChannel(void* channel) {
  input_pv_channel_ =
      static_cast<paddle::framework::ChannelObject<PvInstance>*>(channel);
}

template <typename T>
void InMemoryDataFeed<T>::SetOutputPvChannel(void* channel) {
  output_pv_channel_ =
      static_cast<paddle::framework::ChannelObject<PvInstance>*>(channel);
}

template <typename T>
void InMemoryDataFeed<T>::SetConsumePvChannel(void* channel) {
  consume_pv_channel_ =
      static_cast<paddle::framework::ChannelObject<PvInstance>*>(channel);
}

474 475 476 477 478 479 480 481 482 483
template <typename T>
void InMemoryDataFeed<T>::SetThreadId(int thread_id) {
  thread_id_ = thread_id;
}

template <typename T>
void InMemoryDataFeed<T>::SetThreadNum(int thread_num) {
  thread_num_ = thread_num;
}

484 485 486 487 488
template <typename T>
void InMemoryDataFeed<T>::SetParseContent(bool parse_content) {
  parse_content_ = parse_content;
}

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
template <typename T>
void InMemoryDataFeed<T>::SetParseLogKey(bool parse_logkey) {
  parse_logkey_ = parse_logkey;
}

template <typename T>
void InMemoryDataFeed<T>::SetEnablePvMerge(bool enable_pv_merge) {
  enable_pv_merge_ = enable_pv_merge;
}

template <typename T>
void InMemoryDataFeed<T>::SetCurrentPhase(int current_phase) {
  current_phase_ = current_phase;
}

504 505 506 507 508
template <typename T>
void InMemoryDataFeed<T>::SetParseInsId(bool parse_ins_id) {
  parse_ins_id_ = parse_ins_id;
}

509 510 511 512 513
template <typename T>
void InMemoryDataFeed<T>::SetParseUid(bool parse_uid) {
  parse_uid_ = parse_uid;
}

514 515
template <typename T>
void InMemoryDataFeed<T>::LoadIntoMemory() {
D
dongdaxiang 已提交
516
#ifdef _LINUX
T
Thunderbrook 已提交
517 518 519 520
  if (!so_parser_name_.empty()) {
    LoadIntoMemoryFromSo();
    return;
  }
X
xujiaqi01 已提交
521
  VLOG(3) << "LoadIntoMemory() begin, thread_id=" << thread_id_;
522
  std::string filename;
J
jiaqi 已提交
523
  while (this->PickOneFile(&filename)) {
X
xujiaqi01 已提交
524 525
    VLOG(3) << "PickOneFile, filename=" << filename
            << ", thread_id=" << thread_id_;
H
hutuxian 已提交
526 527 528 529 530 531 532 533 534 535 536
#ifdef PADDLE_WITH_BOX_PS
    if (BoxWrapper::GetInstance()->UseAfsApi()) {
      this->fp_ = BoxWrapper::GetInstance()->afs_manager->GetFile(
          filename, this->pipe_command_);
    } else {
#endif
      int err_no = 0;
      this->fp_ = fs_open_read(filename, &err_no, this->pipe_command_);
#ifdef PADDLE_WITH_BOX_PS
    }
#endif
J
jiaqi 已提交
537 538 539
    CHECK(this->fp_ != nullptr);
    __fsetlocking(&*(this->fp_), FSETLOCKING_BYCALLER);
    paddle::framework::ChannelWriter<T> writer(input_channel_);
540
    T instance;
541 542
    platform::Timer timeline;
    timeline.Start();
D
dongdaxiang 已提交
543
    while (ParseOneInstanceFromPipe(&instance)) {
J
jiaqi 已提交
544 545
      writer << std::move(instance);
      instance = T();
546
    }
H
hutuxian 已提交
547 548 549 550 551 552
    STAT_ADD(STAT_total_feasign_num_in_mem, fea_num_);
    {
      std::lock_guard<std::mutex> flock(*mutex_for_fea_num_);
      *total_fea_num_ += fea_num_;
      fea_num_ = 0;
    }
J
jiaqi 已提交
553
    writer.Flush();
554
    timeline.Pause();
555 556
    VLOG(3) << "LoadIntoMemory() read all lines, file=" << filename
            << ", cost time=" << timeline.ElapsedSec()
557
            << " seconds, thread_id=" << thread_id_;
558
  }
X
xujiaqi01 已提交
559
  VLOG(3) << "LoadIntoMemory() end, thread_id=" << thread_id_;
D
dongdaxiang 已提交
560
#endif
561 562
}

T
Thunderbrook 已提交
563 564
template <typename T>
void InMemoryDataFeed<T>::LoadIntoMemoryFromSo() {
T
Thunderbrook 已提交
565 566
#if (defined _LINUX) && (defined PADDLE_WITH_HETERPS) && \
    (defined PADDLE_WITH_PSLIB)
T
Thunderbrook 已提交
567
  VLOG(3) << "LoadIntoMemoryFromSo() begin, thread_id=" << thread_id_;
T
Thunderbrook 已提交
568 569 570
  int buf_len = 1024 * 1024 * 10;
  char* buf = (char*)malloc(buf_len + 10);
  auto ps_gpu_ptr = PSGPUWrapper::GetInstance();
T
Thunderbrook 已提交
571 572 573 574 575 576 577 578 579 580

  paddle::framework::CustomParser* parser =
      global_dlmanager_pool().Load(so_parser_name_, slot_conf_);

  std::string filename;
  while (this->PickOneFile(&filename)) {
    VLOG(3) << "PickOneFile, filename=" << filename
            << ", thread_id=" << thread_id_;
    platform::Timer timeline;
    timeline.Start();
T
Thunderbrook 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
    if (ps_gpu_ptr->UseAfsApi()) {
      auto afs_reader = ps_gpu_ptr->OpenReader(filename);
      int read_len = 0;
      char* cursor = buf;
      int remain = 0;
      while ((read_len = afs_reader->read(cursor, buf_len - remain)) > 0) {
        std::vector<T> instances;
        read_len += remain;
        remain = ParseInstanceFromSo(read_len, buf, &instances, parser);
        input_channel_->Write(std::move(instances));
        instances = std::vector<T>();
        if (remain) {
          memmove(buf, buf + read_len - remain, remain);
        }
        cursor = buf + remain;
T
Thunderbrook 已提交
596
      }
T
Thunderbrook 已提交
597 598
    } else {
      VLOG(0) << "Should Call InitAfsApi First";
T
Thunderbrook 已提交
599 600 601 602 603 604 605
    }

    timeline.Pause();
    VLOG(3) << "LoadIntoMemoryFromSo() read all lines, file=" << filename
            << ", cost time=" << timeline.ElapsedSec()
            << " seconds, thread_id=" << thread_id_;
  }
T
Thunderbrook 已提交
606
  free(buf);
T
Thunderbrook 已提交
607 608 609 610
  VLOG(3) << "LoadIntoMemoryFromSo() end, thread_id=" << thread_id_;
#endif
}

611
// explicit instantiation
J
jiaqi 已提交
612
template class InMemoryDataFeed<Record>;
613

W
Wang Guibao 已提交
614 615 616 617 618 619
void MultiSlotDataFeed::Init(
    const paddle::framework::DataFeedDesc& data_feed_desc) {
  finish_init_ = false;
  finish_set_filelist_ = false;
  finish_start_ = false;

620 621 622 623
  PADDLE_ENFORCE_EQ(
      data_feed_desc.has_multi_slot_desc(), true,
      platform::errors::PreconditionNotMet(
          "Multi_slot_desc has not been set in MultiSlotDataFeed."));
W
Wang Guibao 已提交
624 625 626
  paddle::framework::MultiSlotDesc multi_slot_desc =
      data_feed_desc.multi_slot_desc();
  SetBatchSize(data_feed_desc.batch_size());
J
jiaqi 已提交
627 628
  // temporarily set queue size = batch size * 100
  SetQueueSize(data_feed_desc.batch_size() * 100);
W
Wang Guibao 已提交
629 630 631 632
  size_t all_slot_num = multi_slot_desc.slots_size();
  all_slots_.resize(all_slot_num);
  all_slots_type_.resize(all_slot_num);
  use_slots_index_.resize(all_slot_num);
633 634
  total_dims_without_inductive_.resize(all_slot_num);
  inductive_shape_index_.resize(all_slot_num);
W
Wang Guibao 已提交
635 636 637 638 639 640 641
  use_slots_.clear();
  use_slots_is_dense_.clear();
  for (size_t i = 0; i < all_slot_num; ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    all_slots_[i] = slot.name();
    all_slots_type_[i] = slot.type();
    use_slots_index_[i] = slot.is_used() ? use_slots_.size() : -1;
642 643
    total_dims_without_inductive_[i] = 1;
    inductive_shape_index_[i] = -1;
W
Wang Guibao 已提交
644 645 646
    if (slot.is_used()) {
      use_slots_.push_back(all_slots_[i]);
      use_slots_is_dense_.push_back(slot.is_dense());
647 648
      std::vector<int> local_shape;
      if (slot.is_dense()) {
649
        for (int j = 0; j < slot.shape_size(); ++j) {
650 651
          if (slot.shape(j) > 0) {
            total_dims_without_inductive_[i] *= slot.shape(j);
652
          }
653 654
          if (slot.shape(j) == -1) {
            inductive_shape_index_[i] = j;
655
          }
656 657
        }
      }
658
      for (int j = 0; j < slot.shape_size(); ++j) {
659
        local_shape.push_back(slot.shape(j));
660 661
      }
      use_slots_shape_.push_back(local_shape);
W
Wang Guibao 已提交
662 663 664
    }
  }
  feed_vec_.resize(use_slots_.size());
665
  pipe_command_ = data_feed_desc.pipe_command();
W
Wang Guibao 已提交
666 667 668
  finish_init_ = true;
}

D
dongdaxiang 已提交
669
void MultiSlotDataFeed::ReadThread() {
670
#ifdef _LINUX
671
  VLOG(4) << "entering MultiSlotDataFeed::ReadThread()";
672 673 674 675
  std::string filename;
  while (PickOneFile(&filename)) {
    int err_no = 0;
    fp_ = fs_open_read(filename, &err_no, pipe_command_);
D
dongdaxiang 已提交
676
    CHECK(fp_ != nullptr);
677 678 679 680 681
    __fsetlocking(&*fp_, FSETLOCKING_BYCALLER);
    std::vector<MultiSlotType> instance;
    int ins_num = 0;
    while (ParseOneInstanceFromPipe(&instance)) {
      ins_num++;
682
      queue_->Put(instance);
683
    }
D
dongdaxiang 已提交
684
    VLOG(3) << "filename: " << filename << " inst num: " << ins_num;
D
dongdaxiang 已提交
685
  }
686
  queue_->Close();
687
#endif
D
dongdaxiang 已提交
688 689
}

W
Wang Guibao 已提交
690
bool MultiSlotDataFeed::CheckFile(const char* filename) {
691
#ifdef _LINUX
W
Wang Guibao 已提交
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
  CheckInit();  // get info of slots
  std::ifstream fin(filename);
  if (!fin.good()) {
    VLOG(1) << "error: open file<" << filename << "> fail";
    return false;
  }
  std::string line;
  int instance_cout = 0;
  std::string all_slots_alias = "";
  for (const auto& alias : all_slots_) {
    all_slots_alias += alias + " ";
  }
  std::string use_slots_alias = "";
  for (const auto& alias : use_slots_) {
    use_slots_alias += alias + " ";
  }
  VLOG(3) << "total slots num: " << all_slots_.size();
  VLOG(3) << "total slots alias: " << all_slots_alias;
  VLOG(3) << "used slots num: " << use_slots_.size();
  VLOG(3) << "used slots alias: " << use_slots_alias;
  while (getline(fin, line)) {
    ++instance_cout;
    const char* str = line.c_str();
    char* endptr = const_cast<char*>(str);
    int len = line.length();
    for (size_t i = 0; i < all_slots_.size(); ++i) {
X
xjqbest 已提交
718
      auto num = strtol(endptr, &endptr, 10);
W
Wang Guibao 已提交
719
      if (num < 0) {
720 721
        VLOG(0) << "error: the number of ids is a negative number: " << num;
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
722
                << filename << ">";
723
        VLOG(0) << "Error occurred when parsing " << i
Y
yaoxuefeng 已提交
724
                << " th slot with total slots number: " << all_slots_.size();
W
Wang Guibao 已提交
725 726
        return false;
      } else if (num == 0) {
727
        VLOG(0)
W
Wang Guibao 已提交
728 729 730 731
            << "error: the number of ids can not be zero, you need "
               "padding it in data generator; or if there is something wrong"
               " with the data, please check if the data contains unresolvable "
               "characters.";
732
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
733
                << filename << ">";
734
        VLOG(0) << "Error occurred when parsing " << i
Y
yaoxuefeng 已提交
735
                << " th slot with total slots number: " << all_slots_.size();
W
Wang Guibao 已提交
736
        return false;
X
xjqbest 已提交
737
      } else if (errno == ERANGE || num > INT_MAX) {
738 739
        VLOG(0) << "error: the number of ids greater than INT_MAX";
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
740
                << filename << ">";
741
        VLOG(0) << "Error occurred when parsing " << i
Y
yaoxuefeng 已提交
742
                << " th slot with total slots number: " << all_slots_.size();
W
Wang Guibao 已提交
743 744 745
        return false;
      }
      if (all_slots_type_[i] == "float") {
Y
yaoxuefeng 已提交
746
        for (int j = 0; j < num; ++j) {
W
Wang Guibao 已提交
747 748
          strtof(endptr, &endptr);
          if (errno == ERANGE) {
749
            VLOG(0) << "error: the value is out of the range of "
W
Wang Guibao 已提交
750
                       "representable values for float";
751
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
752
                    << filename << ">";
753
            VLOG(0) << "Error occurred when parsing " << i
Y
yaoxuefeng 已提交
754 755 756 757
                    << " th slot with total slots number: "
                    << all_slots_.size();
            VLOG(0) << "and in this slot: " << j
                    << " th id with total id number: " << num;
W
Wang Guibao 已提交
758 759
            return false;
          }
Y
yaoxuefeng 已提交
760
          if (j + 1 != num && endptr - str == len) {
761
            VLOG(0) << "error: there is a wrong with the number of ids.";
762
            VLOG(0) << "Error occurred when parsing " << i
Y
yaoxuefeng 已提交
763 764 765 766
                    << " th slot with total slots number: "
                    << all_slots_.size();
            VLOG(0) << "and in this slot: " << j
                    << " th id with total id number: " << num;
767
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
768 769 770 771 772
                    << filename << ">";
            return false;
          }
        }
      } else if (all_slots_type_[i] == "uint64") {
Y
yaoxuefeng 已提交
773
        for (int j = 0; j < num; ++j) {
W
Wang Guibao 已提交
774 775
          strtoull(endptr, &endptr, 10);
          if (errno == ERANGE) {
776
            VLOG(0) << "error: the value is out of the range of "
W
Wang Guibao 已提交
777
                       "representable values for uint64_t";
778
            VLOG(0) << "Error occurred when parsing " << i
Y
yaoxuefeng 已提交
779 780 781 782
                    << " th slot with total slots number: "
                    << all_slots_.size();
            VLOG(0) << "and in this slot: " << j
                    << " th id with total id number: " << num;
783
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
784 785 786
                    << filename << ">";
            return false;
          }
Y
yaoxuefeng 已提交
787
          if (j + 1 != num && endptr - str == len) {
788
            VLOG(0) << "error: there is a wrong with the number of ids.";
789
            VLOG(0) << "Error occurred when parsing " << i
Y
yaoxuefeng 已提交
790 791 792 793
                    << " th slot with total slots number: "
                    << all_slots_.size();
            VLOG(0) << "and in this slot: " << j
                    << " th id with total id number: " << num;
794
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
795 796 797 798 799
                    << filename << ">";
            return false;
          }
        }
      } else {
800
        VLOG(0) << "error: this type<" << all_slots_type_[i]
W
Wang Guibao 已提交
801 802 803 804
                << "> is not supported";
        return false;
      }
    }
805 806 807
    // It may be added '\t' character to the end of the output of reduce
    // task when processes data by Hadoop(when the output of the reduce
    // task of Hadoop has only one field, it will add a '\t' at the end
808 809 810 811 812
    // of the line by default, and you can use this option to avoid it:
    // `-D mapred.textoutputformat.ignoreseparator=true`), which does
    // not affect the correctness of the data. Therefore, it should be
    // judged that the data is not normal when the end of each line of
    // data contains characters which are not spaces.
813 814 815 816 817 818 819 820
    while (endptr - str != len) {
      if (!isspace(*(endptr++))) {
        VLOG(0)
            << "error: there is some extra characters at the end of the line.";
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
                << filename << ">";
        return false;
      }
W
Wang Guibao 已提交
821 822 823 824
    }
  }
  VLOG(3) << "instances cout: " << instance_cout;
  VLOG(3) << "The file format is correct";
825
#endif
W
Wang Guibao 已提交
826 827 828
  return true;
}

D
dongdaxiang 已提交
829 830
bool MultiSlotDataFeed::ParseOneInstanceFromPipe(
    std::vector<MultiSlotType>* instance) {
831
#ifdef _LINUX
832 833 834
  thread_local string::LineFileReader reader;

  if (!reader.getline(&*(fp_.get()))) {
D
dongdaxiang 已提交
835 836
    return false;
  } else {
837 838
    int use_slots_num = use_slots_.size();
    instance->resize(use_slots_num);
D
dongdaxiang 已提交
839 840
    const char* str = reader.get();
    std::string line = std::string(str);
T
tangwei12 已提交
841

D
dongdaxiang 已提交
842 843 844 845 846
    char* endptr = const_cast<char*>(str);
    int pos = 0;
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
T
tangwei12 已提交
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868

      if (num <= 0) {
        std::stringstream ss;
        ss << "\n\nGot unexpected input, maybe something wrong with it.\n";
        ss << "\n----------------------\n";
        ss << "The Origin Input Data:\n";
        ss << "----------------------\n";

        ss << line << "\n";

        ss << "\n----------------------\n";
        ss << "Some Possible Errors:\n";
        ss << "----------------------\n";
        ss << "1. The number of ids can not be zero, you need padding.\n";
        ss << "2. The input data contains unresolvable characters.\n";
        ss << "3. We detect the slot " << i << "'s feasign number is " << num
           << " which is illegal.\n";
        ss << "\n";

        PADDLE_THROW(platform::errors::InvalidArgument(ss.str()));
      }

D
dongdaxiang 已提交
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
      if (idx != -1) {
        (*instance)[idx].Init(all_slots_type_[i]);
        if ((*instance)[idx].GetType()[0] == 'f') {  // float
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
            (*instance)[idx].AddValue(feasign);
          }
        } else if ((*instance)[idx].GetType()[0] == 'u') {  // uint64
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
            (*instance)[idx].AddValue(feasign);
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
D
dongdaxiang 已提交
885 886 887 888
          // pos = line.find_first_of(' ', pos + 1);
          while (line[pos + 1] != ' ') {
            pos++;
          }
D
dongdaxiang 已提交
889 890 891 892 893
        }
      }
    }
    return true;
  }
894 895 896
#else
  return true;
#endif
D
dongdaxiang 已提交
897 898
}

W
Wang Guibao 已提交
899
bool MultiSlotDataFeed::ParseOneInstance(std::vector<MultiSlotType>* instance) {
X
xjqbest 已提交
900
#ifdef _LINUX
W
Wang Guibao 已提交
901 902 903 904 905 906 907 908 909 910 911
  std::string line;
  if (getline(file_, line)) {
    int use_slots_num = use_slots_.size();
    instance->resize(use_slots_num);
    // parse line
    const char* str = line.c_str();
    char* endptr = const_cast<char*>(str);
    int pos = 0;
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
912 913 914 915 916 917
      PADDLE_ENFORCE_NE(
          num, 0,
          platform::errors::InvalidArgument(
              "The number of ids can not be zero, you need padding "
              "it in data generator; or if there is something wrong with "
              "the data, please check if the data contains unresolvable "
Y
yaoxuefeng 已提交
918 919 920
              "characters.\nplease check this error line: %s, \n Specifically, "
              "something wrong happened(the length of this slot's feasign is 0)"
              "when we parse the %d th slots."
Y
yaoxuefeng 已提交
921
              "Maybe something wrong around this slot"
Y
yaoxuefeng 已提交
922 923 924
              "\nWe detect the feasign number of this slot is %d, "
              "which is illegal.",
              str, i, num));
925

W
Wang Guibao 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
      if (idx != -1) {
        (*instance)[idx].Init(all_slots_type_[i]);
        if ((*instance)[idx].GetType()[0] == 'f') {  // float
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
            (*instance)[idx].AddValue(feasign);
          }
        } else if ((*instance)[idx].GetType()[0] == 'u') {  // uint64
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
            (*instance)[idx].AddValue(feasign);
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
          pos = line.find_first_of(' ', pos + 1);
        }
      }
    }
  } else {
    return false;
  }
X
xjqbest 已提交
949 950
#endif
  return false;
W
Wang Guibao 已提交
951 952 953 954 955
}

void MultiSlotDataFeed::AddInstanceToInsVec(
    std::vector<MultiSlotType>* ins_vec,
    const std::vector<MultiSlotType>& instance, int index) {
X
xjqbest 已提交
956
#ifdef _LINUX
W
Wang Guibao 已提交
957 958 959 960 961 962 963
  if (index == 0) {
    ins_vec->resize(instance.size());
    for (size_t i = 0; i < instance.size(); ++i) {
      (*ins_vec)[i].Init(instance[i].GetType());
      (*ins_vec)[i].InitOffset();
    }
  }
964

W
Wang Guibao 已提交
965 966 967
  for (size_t i = 0; i < instance.size(); ++i) {
    (*ins_vec)[i].AddIns(instance[i]);
  }
X
xjqbest 已提交
968
#endif
W
Wang Guibao 已提交
969 970 971 972
}

void MultiSlotDataFeed::PutToFeedVec(
    const std::vector<MultiSlotType>& ins_vec) {
X
xjqbest 已提交
973
#ifdef _LINUX
W
Wang Guibao 已提交
974
  for (size_t i = 0; i < use_slots_.size(); ++i) {
975 976 977
    if (feed_vec_[i] == nullptr) {
      continue;
    }
978
    VLOG(4) << "MultiSlotDataFeed::PutToFeedVec i: " << i;
W
Wang Guibao 已提交
979 980 981
    const auto& type = ins_vec[i].GetType();
    const auto& offset = ins_vec[i].GetOffset();
    int total_instance = static_cast<int>(offset.back());
982 983 984
    VLOG(4) << "total_instance: " << total_instance;
    // platform::CPUPlace()
    VLOG(4) << "this->place_: " << this->place_;
W
Wang Guibao 已提交
985 986
    if (type[0] == 'f') {  // float
      const auto& feasign = ins_vec[i].GetFloatData();
987 988 989
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, &feasign[0], total_instance * sizeof(float));
W
Wang Guibao 已提交
990 991 992
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
      const auto& feasign = ins_vec[i].GetUint64Data();
993
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
994 995 996
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, &feasign[0],
                       total_instance * sizeof(int64_t));
997
    }
998

W
wangguanqun 已提交
999 1000 1001 1002
    if (!use_slots_is_dense_[i]) {
      LoD data_lod{offset};
      feed_vec_[i]->set_lod(data_lod);
    }
1003
    if (use_slots_is_dense_[i]) {
1004 1005 1006 1007
      if (inductive_shape_index_[i] != -1) {
        use_slots_shape_[i][inductive_shape_index_[i]] =
            total_instance / total_dims_without_inductive_[i];
      }
1008
      feed_vec_[i]->Resize(phi::make_ddim(use_slots_shape_[i]));
W
Wang Guibao 已提交
1009 1010
    }
  }
X
xjqbest 已提交
1011
#endif
W
Wang Guibao 已提交
1012 1013
}

1014 1015 1016 1017 1018 1019
void MultiSlotInMemoryDataFeed::Init(
    const paddle::framework::DataFeedDesc& data_feed_desc) {
  finish_init_ = false;
  finish_set_filelist_ = false;
  finish_start_ = false;

1020 1021 1022 1023
  PADDLE_ENFORCE_EQ(
      data_feed_desc.has_multi_slot_desc(), true,
      platform::errors::PreconditionNotMet(
          "Multi_slot_desc has not been set in MultiSlotInMemoryDataFeed."));
1024 1025 1026 1027 1028 1029 1030
  paddle::framework::MultiSlotDesc multi_slot_desc =
      data_feed_desc.multi_slot_desc();
  SetBatchSize(data_feed_desc.batch_size());
  size_t all_slot_num = multi_slot_desc.slots_size();
  all_slots_.resize(all_slot_num);
  all_slots_type_.resize(all_slot_num);
  use_slots_index_.resize(all_slot_num);
1031 1032
  total_dims_without_inductive_.resize(all_slot_num);
  inductive_shape_index_.resize(all_slot_num);
1033 1034
  use_slots_.clear();
  use_slots_is_dense_.clear();
T
Thunderbrook 已提交
1035
  slot_conf_.resize(all_slot_num);
1036 1037 1038 1039 1040
  for (size_t i = 0; i < all_slot_num; ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    all_slots_[i] = slot.name();
    all_slots_type_[i] = slot.type();
    use_slots_index_[i] = slot.is_used() ? use_slots_.size() : -1;
T
Thunderbrook 已提交
1041 1042 1043 1044 1045

    slot_conf_[i].name = slot.name();
    slot_conf_[i].type = slot.type();
    slot_conf_[i].use_slots_index = use_slots_index_[i];

1046 1047
    total_dims_without_inductive_[i] = 1;
    inductive_shape_index_[i] = -1;
1048 1049 1050
    if (slot.is_used()) {
      use_slots_.push_back(all_slots_[i]);
      use_slots_is_dense_.push_back(slot.is_dense());
T
Thunderbrook 已提交
1051
      slot_conf_[i].use_slots_is_dense = slot.is_dense();
1052 1053
      std::vector<int> local_shape;
      if (slot.is_dense()) {
1054
        for (int j = 0; j < slot.shape_size(); ++j) {
1055 1056
          if (slot.shape(j) > 0) {
            total_dims_without_inductive_[i] *= slot.shape(j);
1057
          }
1058 1059
          if (slot.shape(j) == -1) {
            inductive_shape_index_[i] = j;
1060
          }
1061 1062
        }
      }
1063
      for (int j = 0; j < slot.shape_size(); ++j) {
1064
        local_shape.push_back(slot.shape(j));
1065 1066
      }
      use_slots_shape_.push_back(local_shape);
1067 1068
    }
  }
1069
  uid_slot_ = multi_slot_desc.uid_slot();
1070
  feed_vec_.resize(use_slots_.size());
H
hutuxian 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
  const int kEstimatedFeasignNumPerSlot = 5;  // Magic Number
  for (size_t i = 0; i < all_slot_num; i++) {
    batch_float_feasigns_.push_back(std::vector<float>());
    batch_uint64_feasigns_.push_back(std::vector<uint64_t>());
    batch_float_feasigns_[i].reserve(default_batch_size_ *
                                     kEstimatedFeasignNumPerSlot);
    batch_uint64_feasigns_[i].reserve(default_batch_size_ *
                                      kEstimatedFeasignNumPerSlot);
    offset_.push_back(std::vector<size_t>());
    offset_[i].reserve(default_batch_size_ +
                       1);  // Each lod info will prepend a zero
  }
  visit_.resize(all_slot_num, false);
1084
  pipe_command_ = data_feed_desc.pipe_command();
T
Thunderbrook 已提交
1085
  so_parser_name_ = data_feed_desc.so_parser_name();
1086
  finish_init_ = true;
1087
  input_type_ = data_feed_desc.input_type();
1088 1089
}

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
void MultiSlotInMemoryDataFeed::GetMsgFromLogKey(const std::string& log_key,
                                                 uint64_t* search_id,
                                                 uint32_t* cmatch,
                                                 uint32_t* rank) {
  std::string searchid_str = log_key.substr(16, 16);
  *search_id = (uint64_t)strtoull(searchid_str.c_str(), NULL, 16);

  std::string cmatch_str = log_key.substr(11, 3);
  *cmatch = (uint32_t)strtoul(cmatch_str.c_str(), NULL, 16);

  std::string rank_str = log_key.substr(14, 2);
  *rank = (uint32_t)strtoul(rank_str.c_str(), NULL, 16);
}

T
Thunderbrook 已提交
1104 1105 1106 1107 1108
int MultiSlotInMemoryDataFeed::ParseInstanceFromSo(
    int len, const char* str, std::vector<Record>* instances,
    CustomParser* parser) {
  // VLOG(0) << "parser: " << parser;
  return parser->ParseInstance(len, str, instances);
T
Thunderbrook 已提交
1109 1110
}

J
jiaqi 已提交
1111
bool MultiSlotInMemoryDataFeed::ParseOneInstanceFromPipe(Record* instance) {
X
xjqbest 已提交
1112
#ifdef _LINUX
1113 1114 1115 1116 1117 1118 1119
  thread_local string::LineFileReader reader;

  if (!reader.getline(&*(fp_.get()))) {
    return false;
  } else {
    const char* str = reader.get();
    std::string line = std::string(str);
1120
    // VLOG(3) << line;
1121 1122
    char* endptr = const_cast<char*>(str);
    int pos = 0;
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
    if (parse_ins_id_) {
      int num = strtol(&str[pos], &endptr, 10);
      CHECK(num == 1);  // NOLINT
      pos = endptr - str + 1;
      size_t len = 0;
      while (str[pos + len] != ' ') {
        ++len;
      }
      instance->ins_id_ = std::string(str + pos, len);
      pos += len + 1;
      VLOG(3) << "ins_id " << instance->ins_id_;
    }
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
    if (parse_content_) {
      int num = strtol(&str[pos], &endptr, 10);
      CHECK(num == 1);  // NOLINT
      pos = endptr - str + 1;
      size_t len = 0;
      while (str[pos + len] != ' ') {
        ++len;
      }
      instance->content_ = std::string(str + pos, len);
      pos += len + 1;
      VLOG(3) << "content " << instance->content_;
    }
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
    if (parse_logkey_) {
      int num = strtol(&str[pos], &endptr, 10);
      CHECK(num == 1);  // NOLINT
      pos = endptr - str + 1;
      size_t len = 0;
      while (str[pos + len] != ' ') {
        ++len;
      }
      // parse_logkey
      std::string log_key = std::string(str + pos, len);
      uint64_t search_id;
      uint32_t cmatch;
      uint32_t rank;
      GetMsgFromLogKey(log_key, &search_id, &cmatch, &rank);

H
hutuxian 已提交
1162
      instance->ins_id_ = log_key;
1163 1164 1165 1166 1167
      instance->search_id = search_id;
      instance->cmatch = cmatch;
      instance->rank = rank;
      pos += len + 1;
    }
1168 1169 1170
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
1171 1172 1173 1174 1175 1176
      PADDLE_ENFORCE_NE(
          num, 0,
          platform::errors::InvalidArgument(
              "The number of ids can not be zero, you need padding "
              "it in data generator; or if there is something wrong with "
              "the data, please check if the data contains unresolvable "
Y
yaoxuefeng 已提交
1177 1178 1179
              "characters.\nplease check this error line: %s, \n Specifically, "
              "something wrong happened(the length of this slot's feasign is 0)"
              "when we parse the %d th slots."
Y
yaoxuefeng 已提交
1180
              "Maybe something wrong around this slot"
Y
yaoxuefeng 已提交
1181 1182 1183
              "\nWe detect the feasign number of this slot is %d, "
              "which is illegal.",
              str, i, num));
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
#ifdef PADDLE_WITH_PSLIB
      if (parse_uid_ && all_slots_[i] == uid_slot_) {
        PADDLE_ENFORCE(num == 1 && all_slots_type_[i][0] == 'u',
                       platform::errors::PreconditionNotMet(
                           "The uid has to be uint64 and single.\n"
                           "please check this error line: %s",
                           str));

        char* uidptr = endptr;
        uint64_t feasign = (uint64_t)strtoull(uidptr, &uidptr, 10);
        instance->uid_ = feasign;
      }
#endif
1197
      if (idx != -1) {
J
jiaqi 已提交
1198
        if (all_slots_type_[i][0] == 'f') {  // float
1199 1200
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
J
jiaqi 已提交
1201
            // if float feasign is equal to zero, ignore it
1202 1203
            // except when slot is dense
            if (fabs(feasign) < 1e-6 && !use_slots_is_dense_[i]) {
J
jiaqi 已提交
1204 1205
              continue;
            }
T
Thunderbrook 已提交
1206
            FeatureFeasign f;
J
jiaqi 已提交
1207 1208
            f.float_feasign_ = feasign;
            instance->float_feasigns_.push_back(FeatureItem(f, idx));
1209
          }
J
jiaqi 已提交
1210
        } else if (all_slots_type_[i][0] == 'u') {  // uint64
1211 1212
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
J
jiaqi 已提交
1213
            // if uint64 feasign is equal to zero, ignore it
1214 1215
            // except when slot is dense
            if (feasign == 0 && !use_slots_is_dense_[i]) {
J
jiaqi 已提交
1216 1217
              continue;
            }
T
Thunderbrook 已提交
1218
            FeatureFeasign f;
J
jiaqi 已提交
1219 1220
            f.uint64_feasign_ = feasign;
            instance->uint64_feasigns_.push_back(FeatureItem(f, idx));
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
          // pos = line.find_first_of(' ', pos + 1);
          while (line[pos + 1] != ' ') {
            pos++;
          }
        }
      }
    }
J
jiaqi 已提交
1233 1234
    instance->float_feasigns_.shrink_to_fit();
    instance->uint64_feasigns_.shrink_to_fit();
H
hutuxian 已提交
1235
    fea_num_ += instance->uint64_feasigns_.size();
1236 1237
    return true;
  }
X
xjqbest 已提交
1238 1239 1240
#else
  return false;
#endif
1241 1242
}

J
jiaqi 已提交
1243
bool MultiSlotInMemoryDataFeed::ParseOneInstance(Record* instance) {
X
xjqbest 已提交
1244
#ifdef _LINUX
1245 1246
  std::string line;
  if (getline(file_, line)) {
1247
    VLOG(3) << line;
1248 1249 1250 1251 1252 1253 1254
    // parse line
    const char* str = line.c_str();
    char* endptr = const_cast<char*>(str);
    int pos = 0;
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
1255 1256 1257 1258 1259 1260
      PADDLE_ENFORCE_NE(
          num, 0,
          platform::errors::InvalidArgument(
              "The number of ids can not be zero, you need padding "
              "it in data generator; or if there is something wrong with "
              "the data, please check if the data contains unresolvable "
Y
yaoxuefeng 已提交
1261 1262 1263
              "characters.\nplease check this error line: %s, \n Specifically, "
              "something wrong happened(the length of this slot's feasign is 0)"
              "when we parse the %d th slots."
Y
yaoxuefeng 已提交
1264
              "Maybe something wrong around this slot"
Y
yaoxuefeng 已提交
1265 1266 1267
              "\nWe detect the feasign number of this slot is %d, "
              "which is illegal.",
              str, i, num));
1268 1269

      if (idx != -1) {
J
jiaqi 已提交
1270
        if (all_slots_type_[i][0] == 'f') {  // float
1271 1272
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
J
jiaqi 已提交
1273 1274 1275
            if (fabs(feasign) < 1e-6) {
              continue;
            }
T
Thunderbrook 已提交
1276
            FeatureFeasign f;
J
jiaqi 已提交
1277 1278
            f.float_feasign_ = feasign;
            instance->float_feasigns_.push_back(FeatureItem(f, idx));
1279
          }
J
jiaqi 已提交
1280
        } else if (all_slots_type_[i][0] == 'u') {  // uint64
1281 1282
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
J
jiaqi 已提交
1283 1284 1285
            if (feasign == 0) {
              continue;
            }
T
Thunderbrook 已提交
1286
            FeatureFeasign f;
J
jiaqi 已提交
1287 1288
            f.uint64_feasign_ = feasign;
            instance->uint64_feasigns_.push_back(FeatureItem(f, idx));
1289 1290 1291 1292 1293 1294 1295 1296 1297
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
          pos = line.find_first_of(' ', pos + 1);
        }
      }
    }
J
jiaqi 已提交
1298 1299 1300
    instance->float_feasigns_.shrink_to_fit();
    instance->uint64_feasigns_.shrink_to_fit();
    return true;
1301 1302 1303
  } else {
    return false;
  }
X
xjqbest 已提交
1304 1305
#endif
  return false;
1306 1307
}

Y
yaoxuefeng 已提交
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
void MultiSlotInMemoryDataFeed::PutToFeedVec(const Record* ins_vec, int num) {
#ifdef _LINUX
  for (size_t i = 0; i < batch_float_feasigns_.size(); ++i) {
    batch_float_feasigns_[i].clear();
    batch_uint64_feasigns_[i].clear();
    offset_[i].clear();
    offset_[i].push_back(0);
  }
  ins_content_vec_.clear();
  ins_content_vec_.reserve(num);
  ins_id_vec_.clear();
  ins_id_vec_.reserve(num);
  for (int i = 0; i < num; ++i) {
    auto& r = ins_vec[i];
    ins_id_vec_.push_back(r.ins_id_);
    ins_content_vec_.push_back(r.content_);
    for (auto& item : r.float_feasigns_) {
      batch_float_feasigns_[item.slot()].push_back(item.sign().float_feasign_);
      visit_[item.slot()] = true;
    }
    for (auto& item : r.uint64_feasigns_) {
      batch_uint64_feasigns_[item.slot()].push_back(
          item.sign().uint64_feasign_);
      visit_[item.slot()] = true;
    }
    for (size_t j = 0; j < use_slots_.size(); ++j) {
      const auto& type = all_slots_type_[j];
      if (visit_[j]) {
        visit_[j] = false;
      } else {
        // fill slot value with default value 0
        if (type[0] == 'f') {  // float
          batch_float_feasigns_[j].push_back(0.0);
        } else if (type[0] == 'u') {  // uint64
          batch_uint64_feasigns_[j].push_back(0);
        }
      }
      // get offset of this ins in this slot
      if (type[0] == 'f') {  // float
        offset_[j].push_back(batch_float_feasigns_[j].size());
      } else if (type[0] == 'u') {  // uint64
        offset_[j].push_back(batch_uint64_feasigns_[j].size());
      }
    }
  }

  for (size_t i = 0; i < use_slots_.size(); ++i) {
    if (feed_vec_[i] == nullptr) {
      continue;
    }
    int total_instance = offset_[i].back();
    const auto& type = all_slots_type_[i];
    if (type[0] == 'f') {  // float
      float* feasign = batch_float_feasigns_[i].data();
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(float));
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
      uint64_t* feasign = batch_uint64_feasigns_[i].data();
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(int64_t));
    }
    auto& slot_offset = offset_[i];
    if (this->input_type_ == 0) {
      LoD data_lod{slot_offset};
      feed_vec_[i]->set_lod(data_lod);
    } else if (this->input_type_ == 1) {
      if (!use_slots_is_dense_[i]) {
        std::vector<size_t> tmp_offset;
        PADDLE_ENFORCE_EQ(slot_offset.size(), 2,
                          platform::errors::InvalidArgument(
                              "In batch reader, the sparse tensor lod size "
                              "must be 2, but received %d.",
                              slot_offset.size()));
        const auto& max_size = slot_offset[1];
        tmp_offset.reserve(max_size + 1);
        for (unsigned int k = 0; k <= max_size; k++) {
          tmp_offset.emplace_back(k);
        }
        slot_offset = tmp_offset;
        LoD data_lod{slot_offset};
        feed_vec_[i]->set_lod(data_lod);
      }
    }
    if (use_slots_is_dense_[i]) {
      if (inductive_shape_index_[i] != -1) {
        use_slots_shape_[i][inductive_shape_index_[i]] =
            total_instance / total_dims_without_inductive_[i];
      }
1399
      feed_vec_[i]->Resize(phi::make_ddim(use_slots_shape_[i]));
Y
yaoxuefeng 已提交
1400 1401 1402 1403 1404
    }
  }
#endif
}

J
jiaqi 已提交
1405 1406
void MultiSlotInMemoryDataFeed::PutToFeedVec(
    const std::vector<Record>& ins_vec) {
X
xjqbest 已提交
1407
#ifdef _LINUX
H
hutuxian 已提交
1408 1409 1410 1411 1412 1413
  for (size_t i = 0; i < batch_float_feasigns_.size(); ++i) {
    batch_float_feasigns_[i].clear();
    batch_uint64_feasigns_[i].clear();
    offset_[i].clear();
    offset_[i].push_back(0);
  }
1414 1415 1416 1417
  ins_content_vec_.clear();
  ins_content_vec_.reserve(ins_vec.size());
  ins_id_vec_.clear();
  ins_id_vec_.reserve(ins_vec.size());
J
jiaqi 已提交
1418 1419
  for (size_t i = 0; i < ins_vec.size(); ++i) {
    auto& r = ins_vec[i];
1420 1421
    ins_id_vec_.push_back(r.ins_id_);
    ins_content_vec_.push_back(r.content_);
J
jiaqi 已提交
1422
    for (auto& item : r.float_feasigns_) {
H
hutuxian 已提交
1423 1424
      batch_float_feasigns_[item.slot()].push_back(item.sign().float_feasign_);
      visit_[item.slot()] = true;
J
jiaqi 已提交
1425 1426
    }
    for (auto& item : r.uint64_feasigns_) {
H
hutuxian 已提交
1427 1428 1429
      batch_uint64_feasigns_[item.slot()].push_back(
          item.sign().uint64_feasign_);
      visit_[item.slot()] = true;
J
jiaqi 已提交
1430 1431 1432
    }
    for (size_t j = 0; j < use_slots_.size(); ++j) {
      const auto& type = all_slots_type_[j];
H
hutuxian 已提交
1433 1434
      if (visit_[j]) {
        visit_[j] = false;
J
jiaqi 已提交
1435 1436 1437
      } else {
        // fill slot value with default value 0
        if (type[0] == 'f') {  // float
H
hutuxian 已提交
1438
          batch_float_feasigns_[j].push_back(0.0);
J
jiaqi 已提交
1439
        } else if (type[0] == 'u') {  // uint64
H
hutuxian 已提交
1440
          batch_uint64_feasigns_[j].push_back(0);
J
jiaqi 已提交
1441 1442 1443 1444
        }
      }
      // get offset of this ins in this slot
      if (type[0] == 'f') {  // float
H
hutuxian 已提交
1445
        offset_[j].push_back(batch_float_feasigns_[j].size());
J
jiaqi 已提交
1446
      } else if (type[0] == 'u') {  // uint64
H
hutuxian 已提交
1447
        offset_[j].push_back(batch_uint64_feasigns_[j].size());
J
jiaqi 已提交
1448
      }
1449 1450 1451 1452
    }
  }

  for (size_t i = 0; i < use_slots_.size(); ++i) {
1453 1454 1455
    if (feed_vec_[i] == nullptr) {
      continue;
    }
H
hutuxian 已提交
1456
    int total_instance = offset_[i].back();
J
jiaqi 已提交
1457
    const auto& type = all_slots_type_[i];
1458
    if (type[0] == 'f') {  // float
H
hutuxian 已提交
1459
      float* feasign = batch_float_feasigns_[i].data();
1460 1461 1462
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(float));
1463 1464
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
H
hutuxian 已提交
1465
      uint64_t* feasign = batch_uint64_feasigns_[i].data();
1466
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
1467 1468
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(int64_t));
1469
    }
H
hutuxian 已提交
1470
    auto& slot_offset = offset_[i];
1471
    if (this->input_type_ == 0) {
W
wangguanqun 已提交
1472 1473 1474 1475
      if (!use_slots_is_dense_[i]) {
        LoD data_lod{slot_offset};
        feed_vec_[i]->set_lod(data_lod);
      }
1476 1477 1478 1479 1480 1481
    } else if (this->input_type_ == 1) {
      if (!use_slots_is_dense_[i]) {
        std::vector<size_t> tmp_offset;
        PADDLE_ENFORCE_EQ(slot_offset.size(), 2,
                          platform::errors::InvalidArgument(
                              "In batch reader, the sparse tensor lod size "
1482
                              "must be 2, but received %d.",
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
                              slot_offset.size()));
        const auto& max_size = slot_offset[1];
        tmp_offset.reserve(max_size + 1);
        for (unsigned int k = 0; k <= max_size; k++) {
          tmp_offset.emplace_back(k);
        }
        slot_offset = tmp_offset;
        LoD data_lod{slot_offset};
        feed_vec_[i]->set_lod(data_lod);
      }
    }
1494
    if (use_slots_is_dense_[i]) {
1495 1496 1497 1498
      if (inductive_shape_index_[i] != -1) {
        use_slots_shape_[i][inductive_shape_index_[i]] =
            total_instance / total_dims_without_inductive_[i];
      }
1499
      feed_vec_[i]->Resize(phi::make_ddim(use_slots_shape_[i]));
1500 1501
    }
  }
X
xjqbest 已提交
1502
#endif
1503 1504
}

1505
#if (defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)) && !defined(_WIN32)
H
hutuxian 已提交
1506 1507 1508 1509 1510 1511 1512 1513 1514
template <typename T>
void PrivateInstantDataFeed<T>::PutToFeedVec() {
  for (size_t i = 0; i < use_slots_.size(); ++i) {
    const auto& type = ins_vec_[i].GetType();
    const auto& offset = ins_vec_[i].GetOffset();
    int total_instance = static_cast<int>(offset.back());

    if (type[0] == 'f') {  // float
      const auto& feasign = ins_vec_[i].GetFloatData();
1515 1516 1517
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, &feasign[0], total_instance * sizeof(float));
H
hutuxian 已提交
1518 1519 1520 1521
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
      const auto& feasign = ins_vec_[i].GetUint64Data();
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
1522 1523 1524
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, &feasign[0],
                       total_instance * sizeof(int64_t));
H
hutuxian 已提交
1525 1526 1527 1528 1529 1530 1531 1532 1533
    }

    LoD data_lod{offset};
    feed_vec_[i]->set_lod(data_lod);
    if (use_slots_is_dense_[i]) {
      int64_t total_dims = 1;
      for (const auto e : use_slots_shape_[i]) {
        total_dims *= e;
      }
1534 1535 1536 1537 1538 1539 1540
      PADDLE_ENFORCE_EQ(
          total_dims, total_instance,
          platform::errors::InvalidArgument(
              "The actual data size of slot[%s] doesn't match its declaration. "
              "The actual data size of slot is %lld"
              ", and its declaration is %lld.",
              use_slots_[i].c_str(), total_dims, total_instance));
1541
      feed_vec_[i]->Resize(phi::make_ddim(use_slots_shape_[i]));
H
hutuxian 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
    }
  }
}

template <typename T>
int PrivateInstantDataFeed<T>::Next() {
  if (ParseOneMiniBatch()) {
    PutToFeedVec();
    return ins_vec_[0].GetBatchSize();
  }
  Postprocess();

  std::string filename;
  if (!PickOneFile(&filename)) {
    return -1;
  }
  if (!Preprocess(filename)) {
    return -1;
  }

1562 1563 1564
  PADDLE_ENFORCE_EQ(
      true, ParseOneMiniBatch(),
      platform::errors::InvalidArgument("Fail to parse mini-batch data."));
H
hutuxian 已提交
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
  PutToFeedVec();
  return ins_vec_[0].GetBatchSize();
}

template <typename T>
void PrivateInstantDataFeed<T>::Init(const DataFeedDesc& data_feed_desc) {
  finish_init_ = false;
  finish_set_filelist_ = false;
  finish_start_ = false;

1575 1576 1577 1578
  PADDLE_ENFORCE_EQ(
      data_feed_desc.has_multi_slot_desc(), true,
      platform::errors::PreconditionNotMet(
          "Multi_slot_desc has not been set in PrivateInstantDataFeed."));
H
hutuxian 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
  paddle::framework::MultiSlotDesc multi_slot_desc =
      data_feed_desc.multi_slot_desc();
  SetBatchSize(data_feed_desc.batch_size());
  size_t all_slot_num = multi_slot_desc.slots_size();
  all_slots_.resize(all_slot_num);
  all_slots_type_.resize(all_slot_num);
  use_slots_index_.resize(all_slot_num);
  multi_inductive_shape_index_.resize(all_slot_num);
  use_slots_.clear();
  use_slots_is_dense_.clear();
  for (size_t i = 0; i < all_slot_num; ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    all_slots_[i] = slot.name();
    all_slots_type_[i] = slot.type();
    use_slots_index_[i] = slot.is_used() ? use_slots_.size() : -1;
    if (slot.is_used()) {
      use_slots_.push_back(all_slots_[i]);
      use_slots_is_dense_.push_back(slot.is_dense());
      std::vector<int> local_shape;
      if (slot.is_dense()) {
1599
        for (int j = 0; j < slot.shape_size(); ++j) {
H
hutuxian 已提交
1600 1601 1602 1603 1604
          if (slot.shape(j) == -1) {
            multi_inductive_shape_index_[i].push_back(j);
          }
        }
      }
1605
      for (int j = 0; j < slot.shape_size(); ++j) {
H
hutuxian 已提交
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
        local_shape.push_back(slot.shape(j));
      }
      use_slots_shape_.push_back(local_shape);
    }
  }
  feed_vec_.resize(use_slots_.size());
  ins_vec_.resize(use_slots_.size());

  finish_init_ = true;
}

template class PrivateInstantDataFeed<std::vector<MultiSlotType>>;

bool MultiSlotFileInstantDataFeed::Preprocess(const std::string& filename) {
  fd_ = open(filename.c_str(), O_RDONLY);
1621 1622 1623 1624
  PADDLE_ENFORCE_NE(
      fd_, -1, platform::errors::Unavailable(
                   "Fail to open file: %s in MultiSlotFileInstantDataFeed.",
                   filename.c_str()));
H
hutuxian 已提交
1625 1626 1627 1628 1629 1630 1631

  struct stat sb;
  fstat(fd_, &sb);
  end_ = static_cast<size_t>(sb.st_size);

  buffer_ =
      reinterpret_cast<char*>(mmap(NULL, end_, PROT_READ, MAP_PRIVATE, fd_, 0));
1632 1633 1634 1635 1636
  PADDLE_ENFORCE_NE(
      buffer_, MAP_FAILED,
      platform::errors::Unavailable(
          "Memory map failed when create shared memory, error number is %s.",
          strerror(errno)));
H
hutuxian 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667

  offset_ = 0;
  return true;
}

bool MultiSlotFileInstantDataFeed::Postprocess() {
  if (buffer_ != nullptr) {
    munmap(buffer_, end_);
    buffer_ = nullptr;
  }
  if (fd_ != -1) {
    close(fd_);
    fd_ = -1;
    end_ = 0;
    offset_ = 0;
  }
  return true;
}

bool MultiSlotFileInstantDataFeed::ParseOneMiniBatch() {
  if (offset_ == end_) {
    return false;
  }

  batch_size_ = 0;
  while (batch_size_ < default_batch_size_ && offset_ < end_) {
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      char type = all_slots_type_[i][0];

      uint16_t num = *reinterpret_cast<uint16_t*>(buffer_ + offset_);
1668 1669 1670 1671 1672 1673 1674
      PADDLE_ENFORCE_NE(
          num, 0,
          platform::errors::InvalidArgument(
              "The number of ids can not be zero, you need padding "
              "it in data generator; or if there is something wrong with "
              "the data, please check if the data contains unresolvable "
              "characters."));
H
hutuxian 已提交
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
      offset_ += sizeof(uint16_t);

      if (idx != -1) {
        int inductive_size = multi_inductive_shape_index_[i].size();
        if (UNLIKELY(batch_size_ == 0)) {
          ins_vec_[idx].Init(all_slots_type_[i], default_batch_size_ * num);
          ins_vec_[idx].InitOffset(default_batch_size_);
          uint64_t* inductive_shape =
              reinterpret_cast<uint64_t*>(buffer_ + offset_);
          for (int inductive_id = 0; inductive_id < inductive_size;
               ++inductive_id) {
            use_slots_shape_[i][multi_inductive_shape_index_[i][inductive_id]] =
                static_cast<int>(*(inductive_shape + inductive_id));
          }
        }
        num -= inductive_size;
        offset_ += sizeof(uint64_t) * inductive_size;

        if (type == 'f') {
          ins_vec_[idx].AppendValues(
              reinterpret_cast<float*>(buffer_ + offset_), num);
          offset_ += num * sizeof(float);
        } else if (type == 'u') {
          ins_vec_[idx].AppendValues(
              reinterpret_cast<uint64_t*>(buffer_ + offset_), num);
          offset_ += num * sizeof(uint64_t);
        }
      } else {
        if (type == 'f') {
          offset_ += num * sizeof(float);
        } else if (type == 'u') {
          offset_ += num * sizeof(uint64_t);
        }
      }
    }
    ++batch_size_;
    // OPTIMIZE: It is better to insert check codes between instances for format
    // checking
  }

  PADDLE_ENFORCE(batch_size_ == default_batch_size_ || offset_ == end_,
1716 1717 1718 1719 1720 1721
                 platform::errors::InvalidArgument(
                     "The batch size id not equal to default batch size, or "
                     "the offset is not equal to end index."
                     "The batch size is %d, default batcch size is %d, offset "
                     "is %d, end index is %d.",
                     batch_size_, default_batch_size_, offset_, end_));
H
hutuxian 已提交
1722 1723 1724 1725
  return true;
}
#endif

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
bool PaddleBoxDataFeed::Start() {
#ifdef _LINUX
  int phase = GetCurrentPhase();  // join: 1, update: 0
  this->CheckSetFileList();
  if (enable_pv_merge_ && phase == 1) {
    // join phase : input_pv_channel to output_pv_channel
    if (output_pv_channel_->Size() == 0 && input_pv_channel_->Size() != 0) {
      std::vector<PvInstance> data;
      input_pv_channel_->Read(data);
      output_pv_channel_->Write(std::move(data));
    }
  } else {
    // input_channel to output
    if (output_channel_->Size() == 0 && input_channel_->Size() != 0) {
      std::vector<Record> data;
      input_channel_->Read(data);
      output_channel_->Write(std::move(data));
    }
  }
#endif
  this->finish_start_ = true;
  return true;
}

int PaddleBoxDataFeed::Next() {
#ifdef _LINUX
  int phase = GetCurrentPhase();  // join: 1, update: 0
  this->CheckStart();
  if (enable_pv_merge_ && phase == 1) {
    // join phase : output_pv_channel to consume_pv_channel
    CHECK(output_pv_channel_ != nullptr);
    CHECK(consume_pv_channel_ != nullptr);
    VLOG(3) << "output_pv_channel_ size=" << output_pv_channel_->Size()
            << ", consume_pv_channel_ size=" << consume_pv_channel_->Size()
            << ", thread_id=" << thread_id_;
    int index = 0;
    PvInstance pv_instance;
    std::vector<PvInstance> pv_vec;
    pv_vec.reserve(this->pv_batch_size_);
    while (index < this->pv_batch_size_) {
      if (output_pv_channel_->Size() == 0) {
        break;
      }
      output_pv_channel_->Get(pv_instance);
      pv_vec.push_back(pv_instance);
      ++index;
      consume_pv_channel_->Put(std::move(pv_instance));
    }
    this->batch_size_ = index;
    VLOG(3) << "pv_batch_size_=" << this->batch_size_
            << ", thread_id=" << thread_id_;
    if (this->batch_size_ != 0) {
      PutToFeedVec(pv_vec);
    } else {
      VLOG(3) << "finish reading, output_pv_channel_ size="
              << output_pv_channel_->Size()
              << ", consume_pv_channel_ size=" << consume_pv_channel_->Size()
              << ", thread_id=" << thread_id_;
    }
    return this->batch_size_;
  } else {
    this->batch_size_ = MultiSlotInMemoryDataFeed::Next();
    return this->batch_size_;
  }
#else
  return 0;
#endif
}

void PaddleBoxDataFeed::Init(const DataFeedDesc& data_feed_desc) {
  MultiSlotInMemoryDataFeed::Init(data_feed_desc);
  rank_offset_name_ = data_feed_desc.rank_offset();
  pv_batch_size_ = data_feed_desc.pv_batch_size();
}

void PaddleBoxDataFeed::GetRankOffset(const std::vector<PvInstance>& pv_vec,
                                      int ins_number) {
  int index = 0;
  int max_rank = 3;  // the value is setting
  int row = ins_number;
  int col = max_rank * 2 + 1;
  int pv_num = pv_vec.size();

  std::vector<int> rank_offset_mat(row * col, -1);
  rank_offset_mat.shrink_to_fit();

  for (int i = 0; i < pv_num; i++) {
    auto pv_ins = pv_vec[i];
    int ad_num = pv_ins->ads.size();
    int index_start = index;
    for (int j = 0; j < ad_num; ++j) {
      auto ins = pv_ins->ads[j];
      int rank = -1;
      if ((ins->cmatch == 222 || ins->cmatch == 223) &&
          ins->rank <= static_cast<uint32_t>(max_rank) && ins->rank != 0) {
        rank = ins->rank;
      }

      rank_offset_mat[index * col] = rank;
      if (rank > 0) {
        for (int k = 0; k < ad_num; ++k) {
          auto cur_ins = pv_ins->ads[k];
          int fast_rank = -1;
          if ((cur_ins->cmatch == 222 || cur_ins->cmatch == 223) &&
              cur_ins->rank <= static_cast<uint32_t>(max_rank) &&
              cur_ins->rank != 0) {
            fast_rank = cur_ins->rank;
          }

          if (fast_rank > 0) {
            int m = fast_rank - 1;
            rank_offset_mat[index * col + 2 * m + 1] = cur_ins->rank;
            rank_offset_mat[index * col + 2 * m + 2] = index_start + k;
          }
        }
      }
      index += 1;
    }
  }

  int* rank_offset = rank_offset_mat.data();
  int* tensor_ptr = rank_offset_->mutable_data<int>({row, col}, this->place_);
  CopyToFeedTensor(tensor_ptr, rank_offset, row * col * sizeof(int));
}

void PaddleBoxDataFeed::AssignFeedVar(const Scope& scope) {
  MultiSlotInMemoryDataFeed::AssignFeedVar(scope);
  // set rank offset memory
  int phase = GetCurrentPhase();  // join: 1, update: 0
  if (enable_pv_merge_ && phase == 1) {
    rank_offset_ = scope.FindVar(rank_offset_name_)->GetMutable<LoDTensor>();
  }
}

void PaddleBoxDataFeed::PutToFeedVec(const std::vector<PvInstance>& pv_vec) {
#ifdef _LINUX
  int ins_number = 0;
  std::vector<Record*> ins_vec;
  for (auto& pv : pv_vec) {
    ins_number += pv->ads.size();
    for (auto ins : pv->ads) {
      ins_vec.push_back(ins);
    }
  }
  GetRankOffset(pv_vec, ins_number);
  PutToFeedVec(ins_vec);
#endif
}

int PaddleBoxDataFeed::GetCurrentPhase() {
#ifdef PADDLE_WITH_BOX_PS
  auto box_ptr = paddle::framework::BoxWrapper::GetInstance();
1878 1879 1880 1881 1882
  if (box_ptr->Mode() == 1) {  // For AucRunner
    return 1;
  } else {
    return box_ptr->Phase();
  }
1883 1884 1885 1886 1887 1888 1889 1890
#else
  LOG(WARNING) << "It should be complied with BOX_PS...";
  return current_phase_;
#endif
}

void PaddleBoxDataFeed::PutToFeedVec(const std::vector<Record*>& ins_vec) {
#ifdef _LINUX
H
hutuxian 已提交
1891 1892 1893 1894 1895 1896
  for (size_t i = 0; i < batch_float_feasigns_.size(); ++i) {
    batch_float_feasigns_[i].clear();
    batch_uint64_feasigns_[i].clear();
    offset_[i].clear();
    offset_[i].push_back(0);
  }
1897 1898 1899 1900 1901 1902 1903 1904 1905
  ins_content_vec_.clear();
  ins_content_vec_.reserve(ins_vec.size());
  ins_id_vec_.clear();
  ins_id_vec_.reserve(ins_vec.size());
  for (size_t i = 0; i < ins_vec.size(); ++i) {
    auto r = ins_vec[i];
    ins_id_vec_.push_back(r->ins_id_);
    ins_content_vec_.push_back(r->content_);
    for (auto& item : r->float_feasigns_) {
H
hutuxian 已提交
1906 1907
      batch_float_feasigns_[item.slot()].push_back(item.sign().float_feasign_);
      visit_[item.slot()] = true;
1908 1909
    }
    for (auto& item : r->uint64_feasigns_) {
H
hutuxian 已提交
1910 1911 1912
      batch_uint64_feasigns_[item.slot()].push_back(
          item.sign().uint64_feasign_);
      visit_[item.slot()] = true;
1913 1914 1915
    }
    for (size_t j = 0; j < use_slots_.size(); ++j) {
      const auto& type = all_slots_type_[j];
H
hutuxian 已提交
1916 1917
      if (visit_[j]) {
        visit_[j] = false;
1918 1919 1920
      } else {
        // fill slot value with default value 0
        if (type[0] == 'f') {  // float
H
hutuxian 已提交
1921
          batch_float_feasigns_[j].push_back(0.0);
1922
        } else if (type[0] == 'u') {  // uint64
H
hutuxian 已提交
1923
          batch_uint64_feasigns_[j].push_back(0);
1924 1925 1926 1927
        }
      }
      // get offset of this ins in this slot
      if (type[0] == 'f') {  // float
H
hutuxian 已提交
1928
        offset_[j].push_back(batch_float_feasigns_[j].size());
1929
      } else if (type[0] == 'u') {  // uint64
H
hutuxian 已提交
1930
        offset_[j].push_back(batch_uint64_feasigns_[j].size());
1931 1932 1933 1934 1935 1936 1937 1938
      }
    }
  }

  for (size_t i = 0; i < use_slots_.size(); ++i) {
    if (feed_vec_[i] == nullptr) {
      continue;
    }
H
hutuxian 已提交
1939
    int total_instance = offset_[i].back();
1940 1941
    const auto& type = all_slots_type_[i];
    if (type[0] == 'f') {  // float
H
hutuxian 已提交
1942
      float* feasign = batch_float_feasigns_[i].data();
1943 1944 1945 1946 1947
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(float));
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
H
hutuxian 已提交
1948
      uint64_t* feasign = batch_uint64_feasigns_[i].data();
1949 1950 1951 1952
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(int64_t));
    }
H
hutuxian 已提交
1953
    auto& slot_offset = offset_[i];
1954 1955 1956 1957 1958 1959 1960
    LoD data_lod{slot_offset};
    feed_vec_[i]->set_lod(data_lod);
    if (use_slots_is_dense_[i]) {
      if (inductive_shape_index_[i] != -1) {
        use_slots_shape_[i][inductive_shape_index_[i]] =
            total_instance / total_dims_without_inductive_[i];
      }
1961
      feed_vec_[i]->Resize(phi::make_ddim(use_slots_shape_[i]));
1962 1963 1964 1965 1966
    }
  }
#endif
}

Y
yaoxuefeng 已提交
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
template class InMemoryDataFeed<SlotRecord>;
void SlotRecordInMemoryDataFeed::Init(const DataFeedDesc& data_feed_desc) {
  finish_init_ = false;
  finish_set_filelist_ = false;
  finish_start_ = false;
  PADDLE_ENFORCE(data_feed_desc.has_multi_slot_desc(),
                 platform::errors::PreconditionNotMet(
                     "Multi_slot_desc has not been set in data_feed_desc"));
  paddle::framework::MultiSlotDesc multi_slot_desc =
      data_feed_desc.multi_slot_desc();
  SetBatchSize(data_feed_desc.batch_size());
  size_t all_slot_num = multi_slot_desc.slots_size();

  all_slots_.resize(all_slot_num);
  all_slots_info_.resize(all_slot_num);
  used_slots_info_.resize(all_slot_num);
  use_slot_size_ = 0;
  use_slots_.clear();

  float_total_dims_size_ = 0;
  float_total_dims_without_inductives_.clear();
  for (size_t i = 0; i < all_slot_num; ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    all_slots_[i] = slot.name();

    AllSlotInfo& all_slot = all_slots_info_[i];
    all_slot.slot = slot.name();
    all_slot.type = slot.type();
    all_slot.used_idx = slot.is_used() ? use_slot_size_ : -1;
    all_slot.slot_value_idx = -1;

    if (slot.is_used()) {
      UsedSlotInfo& info = used_slots_info_[use_slot_size_];
      info.idx = i;
      info.slot = slot.name();
      info.type = slot.type();
      info.dense = slot.is_dense();
      info.total_dims_without_inductive = 1;
      info.inductive_shape_index = -1;

      // record float value and uint64_t value pos
      if (info.type[0] == 'u') {
        info.slot_value_idx = uint64_use_slot_size_;
        all_slot.slot_value_idx = uint64_use_slot_size_;
        ++uint64_use_slot_size_;
      } else if (info.type[0] == 'f') {
        info.slot_value_idx = float_use_slot_size_;
        all_slot.slot_value_idx = float_use_slot_size_;
        ++float_use_slot_size_;
      }

      use_slots_.push_back(slot.name());

      if (slot.is_dense()) {
        for (int j = 0; j < slot.shape_size(); ++j) {
          if (slot.shape(j) > 0) {
            info.total_dims_without_inductive *= slot.shape(j);
          }
          if (slot.shape(j) == -1) {
            info.inductive_shape_index = j;
          }
        }
      }
      if (info.type[0] == 'f') {
        float_total_dims_without_inductives_.push_back(
            info.total_dims_without_inductive);
        float_total_dims_size_ += info.total_dims_without_inductive;
      }
      info.local_shape.clear();
      for (int j = 0; j < slot.shape_size(); ++j) {
        info.local_shape.push_back(slot.shape(j));
      }
      ++use_slot_size_;
    }
  }
  used_slots_info_.resize(use_slot_size_);

  feed_vec_.resize(used_slots_info_.size());
  const int kEstimatedFeasignNumPerSlot = 5;  // Magic Number
  for (size_t i = 0; i < all_slot_num; i++) {
    batch_float_feasigns_.push_back(std::vector<float>());
    batch_uint64_feasigns_.push_back(std::vector<uint64_t>());
    batch_float_feasigns_[i].reserve(default_batch_size_ *
                                     kEstimatedFeasignNumPerSlot);
    batch_uint64_feasigns_[i].reserve(default_batch_size_ *
                                      kEstimatedFeasignNumPerSlot);
    offset_.push_back(std::vector<size_t>());
    offset_[i].reserve(default_batch_size_ +
                       1);  // Each lod info will prepend a zero
  }
  visit_.resize(all_slot_num, false);
  pipe_command_ = data_feed_desc.pipe_command();
  finish_init_ = true;
  input_type_ = data_feed_desc.input_type();
  size_t pos = pipe_command_.find(".so");
  if (pos != std::string::npos) {
    pos = pipe_command_.rfind('|');
    if (pos == std::string::npos) {
      so_parser_name_ = pipe_command_;
      pipe_command_.clear();
    } else {
      so_parser_name_ = pipe_command_.substr(pos + 1);
      pipe_command_ = pipe_command_.substr(0, pos);
    }
    so_parser_name_ = paddle::string::erase_spaces(so_parser_name_);
  } else {
    so_parser_name_.clear();
  }
}

void SlotRecordInMemoryDataFeed::LoadIntoMemory() {
  VLOG(3) << "SlotRecord LoadIntoMemory() begin, thread_id=" << thread_id_;
  if (!so_parser_name_.empty()) {
    LoadIntoMemoryByLib();
  } else {
    LoadIntoMemoryByCommand();
  }
}
void SlotRecordInMemoryDataFeed::LoadIntoMemoryByLib(void) {
  if (true) {
    // user defined file format analysis
    LoadIntoMemoryByFile();
  } else {
    LoadIntoMemoryByLine();
  }
}

void SlotRecordInMemoryDataFeed::LoadIntoMemoryByFile(void) {
T
Thunderbrook 已提交
2095 2096
#if (defined _LINUX) && (defined PADDLE_WITH_HETERPS) && \
    (defined PADDLE_WITH_PSLIB)
Y
yaoxuefeng 已提交
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
  paddle::framework::CustomParser* parser =
      global_dlmanager_pool().Load(so_parser_name_, all_slots_info_);
  CHECK(parser != nullptr);
  // get slotrecord object
  auto pull_record_func = [this](std::vector<SlotRecord>& record_vec,
                                 int max_fetch_num, int offset) {
    if (offset > 0) {
      input_channel_->WriteMove(offset, &record_vec[0]);
      if (max_fetch_num > 0) {
        SlotRecordPool().get(&record_vec[0], offset);
      } else {  // free all
        max_fetch_num = static_cast<int>(record_vec.size());
        if (max_fetch_num > offset) {
          SlotRecordPool().put(&record_vec[offset], (max_fetch_num - offset));
        }
      }
    } else if (max_fetch_num > 0) {
      SlotRecordPool().get(&record_vec, max_fetch_num);
    } else {
      SlotRecordPool().put(&record_vec);
    }
  };

  std::string filename;
  while (this->PickOneFile(&filename)) {
    VLOG(3) << "PickOneFile, filename=" << filename
            << ", thread_id=" << thread_id_;
    platform::Timer timeline;
    timeline.Start();

    int lines = 0;
    bool is_ok = true;
T
Thunderbrook 已提交
2129
    auto ps_gpu_ptr = PSGPUWrapper::GetInstance();
Y
yaoxuefeng 已提交
2130
    do {
T
Thunderbrook 已提交
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
      if (ps_gpu_ptr->UseAfsApi()) {
        auto afs_reader = ps_gpu_ptr->OpenReader(filename);
        is_ok = parser->ParseFileInstance(
            [this, afs_reader](char* buf, int len) {
              return afs_reader->read(buf, len);
            },
            pull_record_func, lines);
      } else {
        int err_no = 0;
        this->fp_ = fs_open_read(filename, &err_no, this->pipe_command_);

        CHECK(this->fp_ != nullptr);
        __fsetlocking(&*(this->fp_), FSETLOCKING_BYCALLER);
        is_ok = parser->ParseFileInstance(
            [this](char* buf, int len) {
              return fread(buf, sizeof(char), len, this->fp_.get());
            },
            pull_record_func, lines);

        if (!is_ok) {
          LOG(WARNING) << "parser error, filename=" << filename
                       << ", lines=" << lines;
        }
Y
yaoxuefeng 已提交
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
      }
    } while (!is_ok);
    timeline.Pause();
    VLOG(3) << "LoadIntoMemoryByLib() read all file, file=" << filename
            << ", cost time=" << timeline.ElapsedSec()
            << " seconds, thread_id=" << thread_id_ << ", lines=" << lines;
  }
#endif
}

void SlotRecordInMemoryDataFeed::LoadIntoMemoryByLine(void) {
#ifdef _LINUX
  paddle::framework::CustomParser* parser =
      global_dlmanager_pool().Load(so_parser_name_, all_slots_info_);
  std::string filename;
  BufferedLineFileReader line_reader;
  line_reader.set_sample_rate(sample_rate_);
  BufferedLineFileReader::LineFunc line_func = nullptr;

  while (this->PickOneFile(&filename)) {
    VLOG(3) << "PickOneFile, filename=" << filename
            << ", thread_id=" << thread_id_;
    std::vector<SlotRecord> record_vec;
    platform::Timer timeline;
    timeline.Start();
    int offset = 0;
    int old_offset = 0;

    SlotRecordPool().get(&record_vec, OBJPOOL_BLOCK_SIZE);
    // get slotrecord object function
    auto record_func = [this, &offset, &record_vec, &old_offset](
        std::vector<SlotRecord>& vec, int num) {
      vec.resize(num);
      if (offset + num > OBJPOOL_BLOCK_SIZE) {
        input_channel_->WriteMove(offset, &record_vec[0]);
        SlotRecordPool().get(&record_vec[0], offset);
        record_vec.resize(OBJPOOL_BLOCK_SIZE);
        offset = 0;
        old_offset = 0;
      }
      for (int i = 0; i < num; ++i) {
        auto& ins = record_vec[offset + i];
        ins->reset();
        vec[i] = ins;
      }
      offset = offset + num;
    };

    line_func = [this, &parser, &record_vec, &offset, &filename, &record_func,
                 &old_offset](const std::string& line) {
      old_offset = offset;
      if (!parser->ParseOneInstance(line, record_func)) {
        offset = old_offset;
        LOG(WARNING) << "read file:[" << filename << "] item error, line:["
                     << line << "]";
        return false;
      }
      if (offset >= OBJPOOL_BLOCK_SIZE) {
        input_channel_->Write(std::move(record_vec));
        record_vec.clear();
        SlotRecordPool().get(&record_vec, OBJPOOL_BLOCK_SIZE);
        offset = 0;
      }
      return true;
    };

    int lines = 0;

    do {
      int err_no = 0;
      this->fp_ = fs_open_read(filename, &err_no, this->pipe_command_);
      CHECK(this->fp_ != nullptr);
      __fsetlocking(&*(this->fp_), FSETLOCKING_BYCALLER);
      lines = line_reader.read_file(this->fp_.get(), line_func, lines);
    } while (line_reader.is_error());

    if (offset > 0) {
      input_channel_->WriteMove(offset, &record_vec[0]);
      if (offset < OBJPOOL_BLOCK_SIZE) {
        SlotRecordPool().put(&record_vec[offset],
                             (OBJPOOL_BLOCK_SIZE - offset));
      }
    } else {
      SlotRecordPool().put(&record_vec);
    }
    record_vec.clear();
    record_vec.shrink_to_fit();
    timeline.Pause();
    VLOG(3) << "LoadIntoMemoryByLib() read all lines, file=" << filename
            << ", cost time=" << timeline.ElapsedSec()
            << " seconds, thread_id=" << thread_id_ << ", lines=" << lines
            << ", sample lines=" << line_reader.get_sample_line()
            << ", filesize=" << line_reader.file_size() / 1024.0 / 1024.0
            << "MB";
  }

  VLOG(3) << "LoadIntoMemoryByLib() end, thread_id=" << thread_id_
          << ", total size: " << line_reader.file_size();
#endif
}

void SlotRecordInMemoryDataFeed::LoadIntoMemoryByCommand(void) {
#ifdef _LINUX
  std::string filename;
  BufferedLineFileReader line_reader;
  line_reader.set_sample_rate(sample_rate_);

  while (this->PickOneFile(&filename)) {
    VLOG(3) << "PickOneFile, filename=" << filename
            << ", thread_id=" << thread_id_;
    int lines = 0;
    std::vector<SlotRecord> record_vec;
    platform::Timer timeline;
    timeline.Start();
    SlotRecordPool().get(&record_vec, OBJPOOL_BLOCK_SIZE);
    int offset = 0;

    do {
      int err_no = 0;
      this->fp_ = fs_open_read(filename, &err_no, this->pipe_command_);
      CHECK(this->fp_ != nullptr);
      __fsetlocking(&*(this->fp_), FSETLOCKING_BYCALLER);

      lines = line_reader.read_file(
          this->fp_.get(),
          [this, &record_vec, &offset, &filename](const std::string& line) {
            if (ParseOneInstance(line, &record_vec[offset])) {
              ++offset;
            } else {
              LOG(WARNING) << "read file:[" << filename
                           << "] item error, line:[" << line << "]";
              return false;
            }
            if (offset >= OBJPOOL_BLOCK_SIZE) {
              input_channel_->Write(std::move(record_vec));
              record_vec.clear();
              SlotRecordPool().get(&record_vec, OBJPOOL_BLOCK_SIZE);
              offset = 0;
            }
            return true;
          },
          lines);
    } while (line_reader.is_error());
    if (offset > 0) {
      input_channel_->WriteMove(offset, &record_vec[0]);
      if (offset < OBJPOOL_BLOCK_SIZE) {
        SlotRecordPool().put(&record_vec[offset],
                             (OBJPOOL_BLOCK_SIZE - offset));
      }
    } else {
      SlotRecordPool().put(&record_vec);
    }
    record_vec.clear();
    record_vec.shrink_to_fit();
    timeline.Pause();
    VLOG(3) << "LoadIntoMemory() read all lines, file=" << filename
            << ", lines=" << lines
            << ", sample lines=" << line_reader.get_sample_line()
            << ", cost time=" << timeline.ElapsedSec()
            << " seconds, thread_id=" << thread_id_;
  }
  VLOG(3) << "LoadIntoMemory() end, thread_id=" << thread_id_
          << ", total size: " << line_reader.file_size();
#endif
}

static void parser_log_key(const std::string& log_key, uint64_t* search_id,
                           uint32_t* cmatch, uint32_t* rank) {
  std::string searchid_str = log_key.substr(16, 16);
  *search_id = static_cast<uint64_t>(strtoull(searchid_str.c_str(), NULL, 16));
  std::string cmatch_str = log_key.substr(11, 3);
  *cmatch = static_cast<uint32_t>(strtoul(cmatch_str.c_str(), NULL, 16));
  std::string rank_str = log_key.substr(14, 2);
  *rank = static_cast<uint32_t>(strtoul(rank_str.c_str(), NULL, 16));
}

bool SlotRecordInMemoryDataFeed::ParseOneInstance(const std::string& line,
                                                  SlotRecord* ins) {
  SlotRecord& rec = (*ins);
  // parse line
  const char* str = line.c_str();
  char* endptr = const_cast<char*>(str);
  int pos = 0;

  thread_local std::vector<std::vector<float>> slot_float_feasigns;
  thread_local std::vector<std::vector<uint64_t>> slot_uint64_feasigns;
  slot_float_feasigns.resize(float_use_slot_size_);
  slot_uint64_feasigns.resize(uint64_use_slot_size_);

  if (parse_ins_id_) {
    int num = strtol(&str[pos], &endptr, 10);
    CHECK(num == 1);  // NOLINT
    pos = endptr - str + 1;
    size_t len = 0;
    while (str[pos + len] != ' ') {
      ++len;
    }
    rec->ins_id_ = std::string(str + pos, len);
    pos += len + 1;
  }
  if (parse_logkey_) {
    int num = strtol(&str[pos], &endptr, 10);
    CHECK(num == 1);  // NOLINT
    pos = endptr - str + 1;
    size_t len = 0;
    while (str[pos + len] != ' ') {
      ++len;
    }
    // parse_logkey
    std::string log_key = std::string(str + pos, len);
    uint64_t search_id;
    uint32_t cmatch;
    uint32_t rank;
    parser_log_key(log_key, &search_id, &cmatch, &rank);

    rec->ins_id_ = log_key;
    rec->search_id = search_id;
    rec->cmatch = cmatch;
    rec->rank = rank;
    pos += len + 1;
  }

  int float_total_slot_num = 0;
  int uint64_total_slot_num = 0;

  for (size_t i = 0; i < all_slots_info_.size(); ++i) {
    auto& info = all_slots_info_[i];
    int num = strtol(&str[pos], &endptr, 10);
    PADDLE_ENFORCE(num,
                   "The number of ids can not be zero, you need padding "
                   "it in data generator; or if there is something wrong with "
                   "the data, please check if the data contains unresolvable "
                   "characters.\nplease check this error line: %s",
                   str);
    if (info.used_idx != -1) {
      if (info.type[0] == 'f') {  // float
        auto& slot_fea = slot_float_feasigns[info.slot_value_idx];
        slot_fea.clear();
        for (int j = 0; j < num; ++j) {
          float feasign = strtof(endptr, &endptr);
          if (fabs(feasign) < 1e-6 && !used_slots_info_[info.used_idx].dense) {
            continue;
          }
          slot_fea.push_back(feasign);
          ++float_total_slot_num;
        }
      } else if (info.type[0] == 'u') {  // uint64
        auto& slot_fea = slot_uint64_feasigns[info.slot_value_idx];
        slot_fea.clear();
        for (int j = 0; j < num; ++j) {
          uint64_t feasign =
              static_cast<uint64_t>(strtoull(endptr, &endptr, 10));
          slot_fea.push_back(feasign);
          ++uint64_total_slot_num;
        }
      }
      pos = endptr - str;
    } else {
      for (int j = 0; j <= num; ++j) {
        // pos = line.find_first_of(' ', pos + 1);
        while (line[pos + 1] != ' ') {
          pos++;
        }
      }
    }
  }
  rec->slot_float_feasigns_.add_slot_feasigns(slot_float_feasigns,
                                              float_total_slot_num);
  rec->slot_uint64_feasigns_.add_slot_feasigns(slot_uint64_feasigns,
                                               uint64_total_slot_num);

  return (uint64_total_slot_num > 0);
}

2428 2429 2430 2431 2432 2433 2434 2435
void SlotRecordInMemoryDataFeed::AssignFeedVar(const Scope& scope) {
  CheckInit();
  for (int i = 0; i < use_slot_size_; ++i) {
    feed_vec_[i] =
        scope.FindVar(used_slots_info_[i].slot)->GetMutable<LoDTensor>();
  }
}

Y
yaoxuefeng 已提交
2436 2437
void SlotRecordInMemoryDataFeed::PutToFeedVec(const SlotRecord* ins_vec,
                                              int num) {
2438 2439 2440 2441 2442
#if defined(PADDLE_WITH_CUDA) && defined(PADDLE_WITH_HETERPS)
  paddle::platform::SetDeviceId(place_.GetDeviceId());
  pack_->pack_instance(ins_vec, num);
  BuildSlotBatchGPU(pack_->ins_num());
#else
Y
yaoxuefeng 已提交
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
  for (int j = 0; j < use_slot_size_; ++j) {
    auto& feed = feed_vec_[j];
    if (feed == nullptr) {
      continue;
    }

    auto& slot_offset = offset_[j];
    slot_offset.clear();
    slot_offset.reserve(num + 1);
    slot_offset.push_back(0);

    int total_instance = 0;
    auto& info = used_slots_info_[j];
    // fill slot value with default value 0
    if (info.type[0] == 'f') {  // float
      auto& batch_fea = batch_float_feasigns_[j];
      batch_fea.clear();

      for (int i = 0; i < num; ++i) {
        auto r = ins_vec[i];
        size_t fea_num = 0;
        float* slot_values =
            r->slot_float_feasigns_.get_values(info.slot_value_idx, &fea_num);
        batch_fea.resize(total_instance + fea_num);
        memcpy(&batch_fea[total_instance], slot_values,
               sizeof(float) * fea_num);
        total_instance += fea_num;
        slot_offset.push_back(total_instance);
      }

      float* feasign = batch_fea.data();
      float* tensor_ptr =
          feed->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(float));

    } else if (info.type[0] == 'u') {  // uint64
      auto& batch_fea = batch_uint64_feasigns_[j];
      batch_fea.clear();

      for (int i = 0; i < num; ++i) {
        auto r = ins_vec[i];
        size_t fea_num = 0;
        uint64_t* slot_values =
            r->slot_uint64_feasigns_.get_values(info.slot_value_idx, &fea_num);
        if (fea_num > 0) {
          batch_fea.resize(total_instance + fea_num);
          memcpy(&batch_fea[total_instance], slot_values,
                 sizeof(uint64_t) * fea_num);
          total_instance += fea_num;
        }
        if (fea_num == 0) {
          batch_fea.resize(total_instance + fea_num);
          batch_fea[total_instance] = 0;
          total_instance += 1;
        }
        slot_offset.push_back(total_instance);
      }

      // no uint64_t type in paddlepaddle
      uint64_t* feasign = batch_fea.data();
      int64_t* tensor_ptr =
          feed->mutable_data<int64_t>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(int64_t));
    }

    if (info.dense) {
      if (info.inductive_shape_index != -1) {
        info.local_shape[info.inductive_shape_index] =
            total_instance / info.total_dims_without_inductive;
      }
2513
      feed->Resize(phi::make_ddim(info.local_shape));
Y
yaoxuefeng 已提交
2514 2515 2516 2517 2518
    } else {
      LoD data_lod{slot_offset};
      feed_vec_[j]->set_lod(data_lod);
    }
  }
2519
#endif
Y
yaoxuefeng 已提交
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
}

void SlotRecordInMemoryDataFeed::ExpandSlotRecord(SlotRecord* rec) {
  SlotRecord& ins = (*rec);
  if (ins->slot_float_feasigns_.slot_offsets.empty()) {
    return;
  }
  size_t total_value_size = ins->slot_float_feasigns_.slot_values.size();
  if (float_total_dims_size_ == total_value_size) {
    return;
  }
  int float_slot_num =
      static_cast<int>(float_total_dims_without_inductives_.size());
  CHECK(float_slot_num == float_use_slot_size_);
  std::vector<float> old_values;
  std::vector<uint32_t> old_offsets;
  old_values.swap(ins->slot_float_feasigns_.slot_values);
  old_offsets.swap(ins->slot_float_feasigns_.slot_offsets);

  ins->slot_float_feasigns_.slot_values.resize(float_total_dims_size_);
  ins->slot_float_feasigns_.slot_offsets.assign(float_slot_num + 1, 0);

  auto& slot_offsets = ins->slot_float_feasigns_.slot_offsets;
  auto& slot_values = ins->slot_float_feasigns_.slot_values;

  uint32_t offset = 0;
  int num = 0;
  uint32_t old_off = 0;
  int dim = 0;

  for (int i = 0; i < float_slot_num; ++i) {
    dim = float_total_dims_without_inductives_[i];
    old_off = old_offsets[i];
    num = static_cast<int>(old_offsets[i + 1] - old_off);
    if (num == 0) {
      // fill slot value with default value 0
      for (int k = 0; k < dim; ++k) {
        slot_values[k + offset] = 0.0;
      }
    } else {
      if (num == dim) {
        memcpy(&slot_values[offset], &old_values[old_off], dim * sizeof(float));
      } else {
        // position fea
        // record position index need fix values
        int pos_idx = static_cast<int>(old_values[old_off]);
        for (int k = 0; k < dim; ++k) {
          if (k == pos_idx) {
            slot_values[k + offset] = 1.0;
          } else {
            slot_values[k + offset] = 0.0;
          }
        }
      }
    }
    slot_offsets[i] = offset;
    offset += dim;
  }
  slot_offsets[float_slot_num] = offset;
  CHECK(float_total_dims_size_ == static_cast<size_t>(offset));
}

bool SlotRecordInMemoryDataFeed::Start() {
2583
  VLOG(4) << "entering SlotRecordInMemoryDataFeed::Start";
Y
yaoxuefeng 已提交
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
#ifdef _LINUX
  this->CheckSetFileList();
  if (input_channel_->Size() != 0) {
    std::vector<SlotRecord> data;
    input_channel_->Read(data);
  }
#endif
  if (batch_offsets_.size() > 0) {
    VLOG(3) << "batch_size offsets: " << batch_offsets_.size();
    enable_heterps_ = true;
    this->offset_index_ = 0;
  }
  this->finish_start_ = true;
2597 2598 2599 2600
#if defined(PADDLE_WITH_CUDA) && defined(PADDLE_WITH_HETERPS)
  CHECK(paddle::platform::is_gpu_place(this->place_));
  pack_ = BatchGpuPackMgr().get(this->GetPlace(), used_slots_info_);
#endif
Y
yaoxuefeng 已提交
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
  return true;
}

int SlotRecordInMemoryDataFeed::Next() {
#ifdef _LINUX
  this->CheckStart();

  VLOG(3) << "enable heter next: " << offset_index_
          << " batch_offsets: " << batch_offsets_.size();
  if (offset_index_ >= batch_offsets_.size()) {
    VLOG(3) << "offset_index: " << offset_index_
            << " batch_offsets: " << batch_offsets_.size();
    return 0;
  }
  auto& batch = batch_offsets_[offset_index_++];
  this->batch_size_ = batch.second;
  VLOG(3) << "batch_size_=" << this->batch_size_
          << ", thread_id=" << thread_id_;
  if (this->batch_size_ != 0) {
    PutToFeedVec(&records_[batch.first], this->batch_size_);
  } else {
    VLOG(3) << "finish reading for heterps, batch size zero, thread_id="
            << thread_id_;
  }
  VLOG(3) << "enable heter next: " << offset_index_
          << " batch_offsets: " << batch_offsets_.size()
          << " baych_size: " << this->batch_size_;

  return this->batch_size_;
#else
  return 0;
#endif
}

2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
#if defined(PADDLE_WITH_CUDA) && defined(PADDLE_WITH_HETERPS)
void SlotRecordInMemoryDataFeed::BuildSlotBatchGPU(const int ins_num) {
  int offset_cols_size = (ins_num + 1);
  size_t slot_total_num = (use_slot_size_ * offset_cols_size);
  pack_->resize_gpu_slot_offsets(slot_total_num * sizeof(size_t));

  auto& value = pack_->value();
  const UsedSlotGpuType* used_slot_gpu_types =
      static_cast<const UsedSlotGpuType*>(pack_->get_gpu_slots());
  FillSlotValueOffset(ins_num, use_slot_size_,
                      reinterpret_cast<size_t*>(pack_->gpu_slot_offsets()),
                      value.d_uint64_offset.data(), uint64_use_slot_size_,
                      value.d_float_offset.data(), float_use_slot_size_,
                      used_slot_gpu_types);
  size_t* d_slot_offsets = reinterpret_cast<size_t*>(pack_->gpu_slot_offsets());

  HostBuffer<size_t>& offsets = pack_->offsets();
  offsets.resize(slot_total_num);
  HostBuffer<void*>& h_tensor_ptrs = pack_->h_tensor_ptrs();
  h_tensor_ptrs.resize(use_slot_size_);
  // alloc gpu memory
  pack_->resize_tensor();

  LoDTensor& float_tensor = pack_->float_tensor();
  LoDTensor& uint64_tensor = pack_->uint64_tensor();

  int64_t float_offset = 0;
  int64_t uint64_offset = 0;

  // copy index
  CUDA_CHECK(cudaMemcpy(offsets.data(), d_slot_offsets,
                        slot_total_num * sizeof(size_t),
                        cudaMemcpyDeviceToHost));
  for (int j = 0; j < use_slot_size_; ++j) {
    auto& feed = feed_vec_[j];
    if (feed == nullptr) {
      h_tensor_ptrs[j] = nullptr;
      continue;
    }

    size_t* off_start_ptr = &offsets[j * offset_cols_size];

    int total_instance = static_cast<int>(off_start_ptr[offset_cols_size - 1]);
    CHECK(total_instance >= 0) << "slot idx:" << j
                               << ", total instance:" << total_instance;
    auto& info = used_slots_info_[j];

    // fill slot value with default value 0
    if (info.type[0] == 'f') {  // float
      if (total_instance > 0) {
        feed->ShareDataWith(float_tensor.Slice(
            static_cast<int64_t>(float_offset),
            static_cast<int64_t>(float_offset + total_instance)));
        feed->Resize({total_instance, 1});
        float_offset += total_instance;
        h_tensor_ptrs[j] = feed->mutable_data<float>(this->place_);
      } else {
        h_tensor_ptrs[j] =
            feed->mutable_data<float>({total_instance, 1}, this->place_);
      }
    } else if (info.type[0] == 'u') {  // uint64
      if (total_instance > 0) {
        feed->ShareDataWith(uint64_tensor.Slice(
            static_cast<int64_t>(uint64_offset),
            static_cast<int64_t>(uint64_offset + total_instance)));
        feed->Resize({total_instance, 1});
        uint64_offset += total_instance;
        h_tensor_ptrs[j] = feed->mutable_data<int64_t>(this->place_);
      } else {
        h_tensor_ptrs[j] =
            feed->mutable_data<int64_t>({total_instance, 1}, this->place_);
      }
    }

    if (info.dense) {
      if (info.inductive_shape_index != -1) {
        info.local_shape[info.inductive_shape_index] =
            total_instance / info.total_dims_without_inductive;
      }
      feed->Resize(phi::make_ddim(info.local_shape));
    } else {
      LoD& lod = (*feed->mutable_lod());
      lod.resize(1);
      lod[0].resize(offset_cols_size);
      paddle::framework::MixVector<size_t> mixv_lod(&lod[0]);
      memcpy(mixv_lod.MutableData(platform::CPUPlace()), off_start_ptr,
             offset_cols_size * sizeof(size_t));
    }
  }
  void** dest_gpu_p = reinterpret_cast<void**>(pack_->slot_buf_ptr());
  CUDA_CHECK(cudaMemcpy(dest_gpu_p, h_tensor_ptrs.data(),
                        use_slot_size_ * sizeof(void*),
                        cudaMemcpyHostToDevice));

  CopyForTensor(ins_num, use_slot_size_, dest_gpu_p,
                (const size_t*)pack_->gpu_slot_offsets(),
                (const uint64_t*)value.d_uint64_keys.data(),
                (const int*)value.d_uint64_offset.data(),
                (const int*)value.d_uint64_lens.data(), uint64_use_slot_size_,
                (const float*)value.d_float_keys.data(),
                (const int*)value.d_float_offset.data(),
                (const int*)value.d_float_lens.data(), float_use_slot_size_,
                used_slot_gpu_types);
}

MiniBatchGpuPack::MiniBatchGpuPack(const paddle::platform::Place& place,
                                   const std::vector<UsedSlotInfo>& infos) {
  place_ = place;
  stream_ = dynamic_cast<platform::CUDADeviceContext*>(
                platform::DeviceContextPool::Instance().Get(place))
                ->stream();

  ins_num_ = 0;
  pv_num_ = 0;
  used_float_num_ = 0;
  used_uint64_num_ = 0;

  used_slot_size_ = static_cast<int>(infos.size());
  for (int i = 0; i < used_slot_size_; ++i) {
    auto& info = infos[i];
    if (info.type[0] == 'u') {
      gpu_used_slots_.push_back({1, info.slot_value_idx});
      ++used_uint64_num_;
    } else {
      gpu_used_slots_.push_back({0, info.slot_value_idx});
      ++used_float_num_;
    }
  }
  copy_host2device(&gpu_slots_, gpu_used_slots_.data(), gpu_used_slots_.size());

  slot_buf_ptr_ = memory::AllocShared(place_, used_slot_size_ * sizeof(void*));

  int device_id = place_.GetDeviceId();
  VLOG(3) << "begin get batch pack device id: " << device_id;
  // sync
  CUDA_CHECK(cudaStreamSynchronize(stream_));
}

MiniBatchGpuPack::~MiniBatchGpuPack() {}

void MiniBatchGpuPack::reset(const paddle::platform::Place& place) {
  place_ = place;
  stream_ = dynamic_cast<platform::CUDADeviceContext*>(
                platform::DeviceContextPool::Instance().Get(place))
                ->stream();
  ins_num_ = 0;
  pv_num_ = 0;
}

void MiniBatchGpuPack::pack_all_data(const SlotRecord* ins_vec, int num) {
  int uint64_total_num = 0;
  int float_total_num = 0;

  buf_.h_uint64_lens.resize(num + 1);
  buf_.h_uint64_lens[0] = 0;
  buf_.h_float_lens.resize(num + 1);
  buf_.h_float_lens[0] = 0;

  for (int i = 0; i < num; ++i) {
    auto r = ins_vec[i];
    uint64_total_num += r->slot_uint64_feasigns_.slot_values.size();
    buf_.h_uint64_lens[i + 1] = uint64_total_num;
    float_total_num += r->slot_float_feasigns_.slot_values.size();
    buf_.h_float_lens[i + 1] = float_total_num;
  }

  int uint64_cols = (used_uint64_num_ + 1);
  buf_.h_uint64_offset.resize(uint64_cols * num);
  buf_.h_uint64_keys.resize(uint64_total_num);

  int float_cols = (used_float_num_ + 1);
  buf_.h_float_offset.resize(float_cols * num);
  buf_.h_float_keys.resize(float_total_num);

  size_t fea_num = 0;
  uint64_total_num = 0;
  float_total_num = 0;
  for (int i = 0; i < num; ++i) {
    auto r = ins_vec[i];
    auto& uint64_feasigns = r->slot_uint64_feasigns_;
    fea_num = uint64_feasigns.slot_values.size();
    if (fea_num > 0) {
      memcpy(&buf_.h_uint64_keys[uint64_total_num],
             uint64_feasigns.slot_values.data(), fea_num * sizeof(uint64_t));
    }
    uint64_total_num += fea_num;
    // copy uint64 offset
    memcpy(&buf_.h_uint64_offset[i * uint64_cols],
           uint64_feasigns.slot_offsets.data(), sizeof(int) * uint64_cols);

    auto& float_feasigns = r->slot_float_feasigns_;
    fea_num = float_feasigns.slot_values.size();
    memcpy(&buf_.h_float_keys[float_total_num],
           float_feasigns.slot_values.data(), fea_num * sizeof(float));
    float_total_num += fea_num;

    // copy float offset
    memcpy(&buf_.h_float_offset[i * float_cols],
           float_feasigns.slot_offsets.data(), sizeof(int) * float_cols);
  }

  CHECK(uint64_total_num == static_cast<int>(buf_.h_uint64_lens.back()))
      << "uint64 value length error";
  CHECK(float_total_num == static_cast<int>(buf_.h_float_lens.back()))
      << "float value length error";
}
void MiniBatchGpuPack::pack_uint64_data(const SlotRecord* ins_vec, int num) {
  int uint64_total_num = 0;

  buf_.h_float_lens.clear();
  buf_.h_float_keys.clear();
  buf_.h_float_offset.clear();

  buf_.h_uint64_lens.resize(num + 1);
  buf_.h_uint64_lens[0] = 0;

  for (int i = 0; i < num; ++i) {
    auto r = ins_vec[i];
    uint64_total_num += r->slot_uint64_feasigns_.slot_values.size();
    buf_.h_uint64_lens[i + 1] = uint64_total_num;
  }

  int uint64_cols = (used_uint64_num_ + 1);
  buf_.h_uint64_offset.resize(uint64_cols * num);
  buf_.h_uint64_keys.resize(uint64_total_num);

  size_t fea_num = 0;
  uint64_total_num = 0;
  for (int i = 0; i < num; ++i) {
    auto r = ins_vec[i];
    auto& uint64_feasigns = r->slot_uint64_feasigns_;
    fea_num = uint64_feasigns.slot_values.size();
    if (fea_num > 0) {
      memcpy(&buf_.h_uint64_keys[uint64_total_num],
             uint64_feasigns.slot_values.data(), fea_num * sizeof(uint64_t));
    }
    uint64_total_num += fea_num;
    // copy uint64 offset
    memcpy(&buf_.h_uint64_offset[i * uint64_cols],
           uint64_feasigns.slot_offsets.data(), sizeof(int) * uint64_cols);
  }
  CHECK(uint64_total_num == static_cast<int>(buf_.h_uint64_lens.back()))
      << "uint64 value length error";
}
void MiniBatchGpuPack::pack_float_data(const SlotRecord* ins_vec, int num) {
  int float_total_num = 0;

  buf_.h_uint64_lens.clear();
  buf_.h_uint64_offset.clear();
  buf_.h_uint64_keys.clear();

  buf_.h_float_lens.resize(num + 1);
  buf_.h_float_lens[0] = 0;

  for (int i = 0; i < num; ++i) {
    auto r = ins_vec[i];
    float_total_num += r->slot_float_feasigns_.slot_values.size();
    buf_.h_float_lens[i + 1] = float_total_num;
  }

  int float_cols = (used_float_num_ + 1);
  buf_.h_float_offset.resize(float_cols * num);
  buf_.h_float_keys.resize(float_total_num);

  size_t fea_num = 0;
  float_total_num = 0;
  for (int i = 0; i < num; ++i) {
    auto r = ins_vec[i];
    auto& float_feasigns = r->slot_float_feasigns_;
    fea_num = float_feasigns.slot_values.size();
    memcpy(&buf_.h_float_keys[float_total_num],
           float_feasigns.slot_values.data(), fea_num * sizeof(float));
    float_total_num += fea_num;

    // copy float offset
    memcpy(&buf_.h_float_offset[i * float_cols],
           float_feasigns.slot_offsets.data(), sizeof(int) * float_cols);
  }
  CHECK(float_total_num == static_cast<int>(buf_.h_float_lens.back()))
      << "float value length error";
}

void MiniBatchGpuPack::pack_instance(const SlotRecord* ins_vec, int num) {
  ins_num_ = num;
  batch_ins_ = ins_vec;
  CHECK(used_uint64_num_ > 0 || used_float_num_ > 0);
  // uint64 and float
  if (used_uint64_num_ > 0 && used_float_num_ > 0) {
    pack_all_data(ins_vec, num);
  } else if (used_uint64_num_ > 0) {  // uint64
    pack_uint64_data(ins_vec, num);
  } else {  // only float
    pack_float_data(ins_vec, num);
  }
  // to gpu
  transfer_to_gpu();
}

void MiniBatchGpuPack::transfer_to_gpu(void) {
  copy_host2device(&value_.d_uint64_lens, buf_.h_uint64_lens);
  copy_host2device(&value_.d_uint64_keys, buf_.h_uint64_keys);
  copy_host2device(&value_.d_uint64_offset, buf_.h_uint64_offset);

  copy_host2device(&value_.d_float_lens, buf_.h_float_lens);
  copy_host2device(&value_.d_float_keys, buf_.h_float_keys);
  copy_host2device(&value_.d_float_offset, buf_.h_float_offset);
  CUDA_CHECK(cudaStreamSynchronize(stream_));
}
#endif

W
Wang Guibao 已提交
2945 2946
}  // namespace framework
}  // namespace paddle