adam_op.cc 10.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/optimizers/adam_op.h"
16
#include "paddle/fluid/framework/op_version_registry.h"
17 18 19 20

namespace paddle {
namespace operators {

D
dzhwinter 已提交
21
using Tensor = framework::Tensor;
22

23
void AdamOp::InferShape(framework::InferShapeContext *ctx) const {
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
  PADDLE_ENFORCE_EQ(
      ctx->HasInput("Param"), true,
      platform::errors::NotFound("Input(Param) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(
      ctx->HasInput("Grad"), true,
      platform::errors::NotFound("Input(Grad) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("Moment1"), true,
                    platform::errors::NotFound(
                        "Input(Moment1) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("Moment2"), true,
                    platform::errors::NotFound(
                        "Input(Moment2) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("LearningRate"), true,
                    platform::errors::NotFound(
                        "Input(LearningRate) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("Beta1Pow"), true,
                    platform::errors::NotFound(
                        "Input(Beta1Pow) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("Beta2Pow"), true,
                    platform::errors::NotFound(
                        "Input(Beta2Pow) of AdamOp should not be null."));

  PADDLE_ENFORCE_EQ(ctx->HasOutput("ParamOut"), true,
                    platform::errors::NotFound(
                        "Output(ParamOut) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Moment1Out"), true,
                    platform::errors::NotFound(
                        "Output(Moment1Out) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Moment2Out"), true,
                    platform::errors::NotFound(
                        "Output(Moment2Out) of AdamOp should not be null."));
55

Y
Yibing Liu 已提交
56
  auto lr_dims = ctx->GetInputDim("LearningRate");
A
Aurelius84 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70
  PADDLE_ENFORCE_NE(
      framework::product(lr_dims), 0,
      platform::errors::InvalidArgument(
          "The number of LearningRate shall not be 0, but received %d. Maybe "
          "the Input variable LearningRate has not "
          "been initialized. You may need to confirm "
          "if you put exe.run(startup_program) "
          "after optimizer.minimize function.",
          framework::product(lr_dims)));
  PADDLE_ENFORCE_EQ(
      framework::product(lr_dims), 1,
      platform::errors::InvalidArgument(
          "Learning rate should have 1 dimension, but received %d",
          framework::product(lr_dims)));
Y
Yibing Liu 已提交
71
  auto beta1_pow_dims = ctx->GetInputDim("Beta1Pow");
A
Aurelius84 已提交
72 73 74 75 76 77
  VLOG(3) << "dims of Beta1Pow : [" << beta1_pow_dims << "]";
  PADDLE_ENFORCE_GE(framework::product(beta1_pow_dims), 1,
                    platform::errors::InvalidArgument(
                        "The size of Beta1 power accumulator should be greater "
                        "than 0, but received %d.",
                        framework::product(beta1_pow_dims)));
Y
Yibing Liu 已提交
78
  auto beta2_pow_dims = ctx->GetInputDim("Beta2Pow");
A
Aurelius84 已提交
79 80 81 82 83 84
  VLOG(3) << "dims of Beta2Pow : [" << beta2_pow_dims << "]";
  PADDLE_ENFORCE_GE(framework::product(beta2_pow_dims), 1,
                    platform::errors::InvalidArgument(
                        "The size of Beta2 power accumulator should be greater "
                        "than 0, but received %d.",
                        framework::product(beta2_pow_dims)));
85

Y
Yibing Liu 已提交
86 87 88
  auto param_dims = ctx->GetInputDim("Param");
  if (ctx->GetInputsVarType("Grad")[0] ==
      framework::proto::VarType::LOD_TENSOR) {
89
    PADDLE_ENFORCE_EQ(
Y
Yibing Liu 已提交
90
        param_dims, ctx->GetInputDim("Grad"),
A
Aurelius84 已提交
91 92 93 94
        platform::errors::InvalidArgument(
            "Param and Grad input of AdamOp should have same dimension. But "
            "received Param dims: [%s], Grad dims: [%s].",
            param_dims, ctx->GetInputDim("Grad")));
95
  }
Y
Yibing Liu 已提交
96 97
  PADDLE_ENFORCE_EQ(
      param_dims, ctx->GetInputDim("Moment1"),
A
Aurelius84 已提交
98 99 100 101
      platform::errors::InvalidArgument(
          "Param and Moment1 input of AdamOp should have same dimension. But "
          "received Param dims: [%s], Moment1 dims: [%s].",
          param_dims, ctx->GetInputDim("Moment1")));
Y
Yibing Liu 已提交
102 103
  PADDLE_ENFORCE_EQ(
      param_dims, ctx->GetInputDim("Moment2"),
A
Aurelius84 已提交
104 105 106 107
      platform::errors::InvalidArgument(
          "Param and Moment2 input of AdamOp should have same dimension. But "
          "received Param dims: [%s], Moment2 dims: [%s].",
          param_dims, ctx->GetInputDim("Moment2")));
Y
Yibing Liu 已提交
108 109 110 111

  ctx->SetOutputDim("ParamOut", param_dims);
  ctx->SetOutputDim("Moment1Out", param_dims);
  ctx->SetOutputDim("Moment2Out", param_dims);
A
Aurelius84 已提交
112 113
  ctx->SetOutputDim("Beta1PowOut", beta1_pow_dims);
  ctx->SetOutputDim("Beta2PowOut", beta2_pow_dims);
Y
Yibing Liu 已提交
114 115 116
}

framework::OpKernelType AdamOp::GetExpectedKernelType(
117
    const framework::ExecutionContext &ctx) const {
118
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Param");
Y
Yibing Liu 已提交
119 120
  return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
121

122 123 124 125 126 127 128 129 130 131 132
framework::OpKernelType AdamOp::GetKernelTypeForVar(
    const std::string &var_name, const framework::Tensor &tensor,
    const framework::OpKernelType &expected_kernel_type) const {
  if (var_name == "Beta1Pow" || var_name == "Beta2Pow") {
    return expected_kernel_type;
  } else {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
}

133 134
class AdamOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
135
  void Make() override {
136 137 138 139 140 141 142 143
    AddInput("Param", "(Tensor) Input parameter");
    AddInput("Grad", "(Tensor) Input gradient");
    AddInput("LearningRate", "(Tensor) Learning rate");
    AddInput("Moment1", "(Tensor) Input first moment");
    AddInput("Moment2", "(Tensor) Input second moment");
    AddInput("Beta1Pow", "(Tensor) Input beta1 power accumulator");
    AddInput("Beta2Pow", "(Tensor) Input beta2 power accumulator");

144 145 146 147 148 149 150 151 152 153
    AddInput("Beta1Tensor",
             "(Tensor<float32>, optional) If provided, Adam will use this "
             "as beta1, this has a higher priority than attr(beta1), the "
             "shape of this tensor MUST BE [1].")
        .AsDispensable();
    AddInput("Beta2Tensor",
             "(Tensor<float32>, optional) If provided, Adam will use this "
             "as beta2, this has a higher priority than attr(beta2), the "
             "shape of this tensor MUST BE [1].")
        .AsDispensable();
154
    AddInput("MasterParam", "FP32 master weight for AMP.").AsDispensable();
155

156 157 158
    AddOutput("ParamOut", "(Tensor) Output parameter");
    AddOutput("Moment1Out", "(Tensor) Output first moment");
    AddOutput("Moment2Out", "(Tensor) Output second moment");
A
Aurelius84 已提交
159 160
    AddOutput("Beta1PowOut", "(Tensor) Output beta1 power accumulator");
    AddOutput("Beta2PowOut", "(Tensor) Output beta2 power accumulator");
161 162 163 164
    AddOutput("MasterParamOut",
              "The updated FP32 master weight for AMP. "
              "It shared memory with Input(MasterParam).")
        .AsDispensable();
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

    AddAttr<float>("beta1",
                   "(float, default 0.9) "
                   "Exponential decay rate for the "
                   "first moment estimates.")
        .SetDefault(0.9f);
    AddAttr<float>("beta2",
                   "(float, default 0.999) "
                   "exponential decay rate for the "
                   "second moment estimates.")
        .SetDefault(0.999f);
    AddAttr<float>("epsilon",
                   "(float, default 1.0e-8) "
                   "Constant for numerical stability")
        .SetDefault(1.0e-8f);
Q
Qiao Longfei 已提交
180
    AddAttr<bool>(
Q
Qiao Longfei 已提交
181
        "lazy_mode",
Q
Qiao Longfei 已提交
182 183 184
        "(bool, default false) "
        "only update the parameter that has gradient in sparse update")
        .SetDefault(false);
185 186 187 188 189 190
    AddAttr<int64_t>("min_row_size_to_use_multithread",
                     "(int64_t, default 0) "
                     "when not zero, if param row size is larger then "
                     "min_row_size_to_use_multithread and "
                     "inner_op_parallelism is larger then 0, sparse update "
                     "will run in multithread mode")
191
        .SetDefault(1000);
192 193 194 195
    AddAttr<bool>("multi_precision",
                  "(bool, default false) "
                  "Whether to use multi-precision during weight updating.")
        .SetDefault(false);
196 197

    AddComment(R"DOC(
198
Adam Optimizer.
199 200

This implements the Adam optimizer from Section 2 of the Adam
201 202 203
paper : https://arxiv.org/abs/1412.6980.
Adam is a first-order gradient-based optimization method based on
adaptive estimates of lower-order moments.
204 205 206

Adam updates:

207 208 209 210 211 212 213
$$
moment\_1\_out = \beta_1 * moment\_1 + (1 - \beta_1) * grad \\
moment\_2_\out = \beta_2 * moment\_2 + (1 - \beta_2) * grad * grad \\
learning\_rate = learning\_rate *
                  \frac{\sqrt{1 - \beta_{2\_pow}}}{1 - \beta_{1\_pow}} \\
param\_out = param - learning\_rate * \frac{moment\_1}{\sqrt{moment\_2} + \epsilon}
$$
214 215 216 217 218 219 220 221 222

)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(adam, ops::AdamOp, ops::AdamOpMaker);
Q
QI JUN 已提交
223 224 225
REGISTER_OP_CPU_KERNEL(
    adam, ops::AdamOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AdamOpKernel<paddle::platform::CPUDeviceContext, double>);
226 227 228 229 230 231 232 233 234 235

REGISTER_OP_VERSION(adam)
    .AddCheckpoint(
        R"ROC(
      Upgrade adam add 1 attribute [multi_precision].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "multi_precision",
            "(bool) Whether to use multi-precision during weight updating.",
            false));