cond_op.cc 7.6 KB
Newer Older
Z
cond op  
zchen0211 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/cond_op.h"
Z
zchen0211 已提交
16 17 18 19

#include <cstring>
#include <sstream>

Z
cond op  
zchen0211 已提交
20
#include "paddle/framework/op_registry.h"
Z
zchen0211 已提交
21
#include "paddle/operators/gather.h"
Z
cond op  
zchen0211 已提交
22
#include "paddle/operators/net_op.h"
Z
zchen0211 已提交
23
#include "paddle/operators/scatter.h"
Z
cond op  
zchen0211 已提交
24 25 26 27

namespace paddle {
namespace operators {

Z
zchen0211 已提交
28 29 30
using Scope = framework::Scope;
using Variable = framework::Variable;
using Tensor = framework::Tensor;
Z
zchen0211 已提交
31
using LoDTensor = framework::LoDTensor;
Z
zchen0211 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44
using DDim = framework::DDim;

void CondOp::CreateScope(const Scope& scope) const {
  auto sub_scopes_var = scope.FindVar("SubScopes");
  PADDLE_ENFORCE(sub_scopes_var != nullptr, "");
  auto sub_scopes = sub_scopes_var->GetMutable<std::vector<Scope*>>();
  auto& sub_scope = scope.NewScope();
  sub_scopes->push_back(&sub_scope);
}

void CondOp::CreateIndexTensor(const Scope& scope) const {
  auto index_tensors_var = scope.FindVar("IndexTensors");
  PADDLE_ENFORCE(index_tensors_var != nullptr, "");
Z
zchen0211 已提交
45 46 47
  auto& index_tensors =
      *index_tensors_var->GetMutable<std::vector<LoDTensor>>();
  index_tensors.push_back(LoDTensor());
Z
zchen0211 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
}

void CondOp::InferShape(const Scope& scope) const {
  auto sub_scopes_var = scope.FindVar("SubScopes");
  PADDLE_ENFORCE_NOT_NULL(sub_scopes_var);
  auto& sub_scopes = *sub_scopes_var->GetMutable<std::vector<Scope*>>();

  for (int i = 0; i < 2; ++i) {
    // Create two sub scopes for true and false branches
    // sub_scopes[0] for the true branch and sub_scopes[1] for the false
    // branch
    CreateScope(scope);

    // Create two tensors for true and false indices
    // index_tensors[0] for the true branch and index_tensors[1] for the false
    // branch
    CreateIndexTensor(scope);

    PADDLE_ENFORCE(!Inputs("Xs").empty(), "Inputs can't be empty");
    for (auto& input : Inputs("Xs")) {
      // Create a new tensor in sub-scope for input-type tensor
      Variable* v = sub_scopes[i]->NewVar(input);
Z
zchen0211 已提交
70 71
      LoDTensor* sub_input = v->GetMutable<LoDTensor>();
      sub_input->Resize(scope.FindVar(input)->GetMutable<LoDTensor>()->dims());
Z
zchen0211 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84
    }

    for (auto& output : (*sub_net_op_[i]).Outputs()) {
      for (auto& var_name : output.second) {
        sub_scopes[i]->NewVar(var_name);
      }
    }

    // each net calls InferShape
    sub_net_op_[i]->InferShape(*sub_scopes[i]);
  }

  for (auto& output : Outputs("Outs")) {
Z
zchen0211 已提交
85 86 87 88 89 90
    LoDTensor* tensor_t_out =
        sub_scopes[0]->FindVar(output)->GetMutable<LoDTensor>();
    PADDLE_ENFORCE_NOT_NULL(tensor_t_out, "True output should not be NULL");
    LoDTensor* tensor_f_out =
        sub_scopes[1]->FindVar(output)->GetMutable<LoDTensor>();
    PADDLE_ENFORCE_NOT_NULL(tensor_f_out, "False output should not be NULL");
Z
zchen0211 已提交
91 92 93

    auto* tensor_out_var = scope.FindVar(output);
    PADDLE_ENFORCE_NOT_NULL(tensor_out_var, "Output not found");
Z
zchen0211 已提交
94 95 96 97
    LoDTensor* tensor_out = tensor_out_var->GetMutable<LoDTensor>();
    PADDLE_ENFORCE_NOT_NULL(tensor_t_out,
                            "True output tensor should not be NULL");

Z
zchen0211 已提交
98 99 100 101
    // check output size should be same
    PADDLE_ENFORCE_EQ(tensor_t_out->dims(), tensor_f_out->dims(),
                      "Outputs not of the same shape");
    tensor_out->Resize(tensor_t_out->dims());
Z
zchen0211 已提交
102 103 104
    // tensor_out->mutable_data<float>(tensor_out->dims(),
    // platform::CPUPlace());
    tensor_out->mutable_data<float>(platform::CPUPlace());
Z
zchen0211 已提交
105 106 107 108 109
  }
}

void CondOp::Run(const Scope& scope,
                 const platform::DeviceContext& dev_ctx) const {
Z
zchen0211 已提交
110 111 112 113
  auto* sub_scopes_var = scope.FindVar("SubScopes");
  auto sub_scopes = sub_scopes_var->Get<std::vector<Scope*>>();
  auto* index_tensors_var = scope.FindVar("IndexTensors");
  auto index_tensors = index_tensors_var->Get<std::vector<LoDTensor>>();
Z
zchen0211 已提交
114 115 116 117

  std::string cond_name = Input("Cond");
  Variable* cond_var = scope.FindVar(cond_name);
  PADDLE_ENFORCE_NOT_NULL(cond_var);
Z
zchen0211 已提交
118
  const LoDTensor* cond = cond_var->GetMutable<LoDTensor>();
Z
zchen0211 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

  // Step 1: get the true/false index at runtime
  // index_[0]: vector<int>, contains all index for cond[i] == true
  // index_[1]: vector<int>, contains all index for cond[i] == false
  for (int i = 0; i < 2; ++i) index_[i].clear();

  const int* cond_data = cond->data<int>();
  for (int i = 0; i < cond->dims()[0]; ++i) {
    if (cond_data[i])
      index_[0].push_back(i);
    else
      index_[1].push_back(i);
  }

  // put index_[0] and index_[1] into two tensors:
  // index_tensor_[0] and index_tensor_[1]
  DDim dim = paddle::framework::make_ddim({0});
  for (int i = 0; i < 2; ++i) {
    dim[0] = index_[i].size();
    int* tmp_ptr =
        index_tensors[i].mutable_data<int>(dim, platform::CPUPlace());
    index_tensors[i].Resize(dim);
    memcpy(tmp_ptr, index_[i].data(), dim[0] * sizeof(int));
  }

  // Step 2: collect data by calling gather
  for (int i = 0; i < 2; ++i) {
    // i= 0/i for True and False branches respectively
    for (auto& input : Inputs("Xs")) {
      // find Tensor
      Variable* v = scope.FindVar(input);
      PADDLE_ENFORCE_NOT_NULL(v);
Z
zchen0211 已提交
151
      LoDTensor* tensor_parent = v->GetMutable<LoDTensor>();
Z
zchen0211 已提交
152 153 154

      v = sub_scopes[i]->FindVar(input);
      PADDLE_ENFORCE_NOT_NULL(v);
Z
zchen0211 已提交
155
      LoDTensor* tensor_child = v->GetMutable<LoDTensor>();
Z
zchen0211 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168

      // Resize child
      DDim dim = tensor_child->dims();
      dim[0] = index_[i].size();
      tensor_child->Resize(dim);
      tensor_child->mutable_data<float>(dim, platform::CPUPlace());

      Gather<float>(dev_ctx.GetPlace(), tensor_parent, &index_tensors[i],
                    tensor_child);
    }
  }

  // Step 3: run
Z
zchen0211 已提交
169 170 171
  for (int i = 0; i < 2; ++i) {
    sub_net_op_[i]->Run(*sub_scopes[i], dev_ctx);
  }
Z
zchen0211 已提交
172 173 174 175 176 177 178 179

  // Step 4: merge output results
  for (int i = 0; i < 2; ++i) {
    // i= 0/i for True and False branches respectively
    for (auto& output : Outputs("Outs")) {
      // find Tensor
      Variable* v = scope.FindVar(output);
      PADDLE_ENFORCE_NOT_NULL(v);
Z
zchen0211 已提交
180
      LoDTensor* tensor_parent = v->GetMutable<LoDTensor>();
Z
zchen0211 已提交
181 182 183

      v = sub_scopes[i]->FindVar(output);
      PADDLE_ENFORCE_NOT_NULL(v);
Z
zchen0211 已提交
184
      LoDTensor* tensor_child = v->GetMutable<LoDTensor>();
Z
zchen0211 已提交
185 186 187 188 189 190 191 192

      ScatterUpdate<float>(dev_ctx.GetPlace(), tensor_child, &index_tensors[i],
                           tensor_parent);
    }
  }
}

class CondOpProtoAndCheckerMaker : public framework::OpProtoAndCheckerMaker {
Z
cond op  
zchen0211 已提交
193
 public:
Z
zchen0211 已提交
194 195
  CondOpProtoAndCheckerMaker(framework::OpProto* proto,
                             framework::OpAttrChecker* op_checker)
Z
cond op  
zchen0211 已提交
196 197 198 199 200 201 202 203 204 205
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("Cond", "The condition, which is a bool vector");
    AddInput("Xs", "Inputs of Subnets").AsDuplicable();
    AddOutput("Outs", "Outputs of Cond_Op after merge").AsDuplicable();

    AddOutput("SubScopes", "sub scopes for true and false branches");
    AddOutput("IndexTensors", "Index Tensors contains indices for true/false");

    AddComment(R"DOC(
Sample dependent Cond Operator:
Z
zchen0211 已提交
206 207 208
Given Cond[i] as a 1/0 vector to indicate true/false
The equation is: 
Out[i] = subnet_t[i], if Cond[i] == true
Z
cond op  
zchen0211 已提交
209 210 211 212 213 214 215 216
Out[i] = subnet_t[i], if Cond[i] == false
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

Z
zchen0211 已提交
217
REGISTER_OP_WITHOUT_GRADIENT(cond, paddle::operators::CondOp,
Z
cond op  
zchen0211 已提交
218
                             paddle::operators::CondOpProtoAndCheckerMaker);