tensor.cc 43.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <Python.h>

#include <algorithm>
#include <cctype>
#include <cstdlib>
#include <iterator>
#include <map>
#include <memory>
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/framework/custom_operator.h"
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/framework/data_type_transform.h"
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/executor_cache.h"
#include "paddle/fluid/framework/executor_gc_helper.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/garbage_collector.h"
#include "paddle/fluid/framework/io/fs.h"
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
#include "paddle/fluid/framework/ir/cost_model.h"
#include "paddle/fluid/framework/ir/generate_pass.h"
#include "paddle/fluid/framework/ir/pass_builder.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/framework/parallel_executor.h"
#include "paddle/fluid/framework/phi_utils.h"
#include "paddle/fluid/framework/prune.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/scope_pool.h"
#include "paddle/fluid/framework/selected_rows_utils.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/framework/trainer.h"
#include "paddle/fluid/framework/type_defs.h"
#include "paddle/fluid/framework/version.h"
#include "paddle/fluid/imperative/amp_auto_cast.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/common_infer_shape_functions.h"
#include "paddle/fluid/operators/py_func_op.h"
#include "paddle/fluid/platform/cpu_helper.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/init.h"
#include "paddle/fluid/platform/monitor.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
#include "paddle/fluid/pybind/cuda_streams_py.h"
#include "paddle/fluid/pybind/distributed_py.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/imperative.h"
#include "paddle/fluid/pybind/io.h"
91
#include "paddle/phi/backends/cpu/cpu_info.h"
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
#include "paddle/utils/none.h"
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
#include "paddle/fluid/pybind/bind_cost_model.h"
#include "paddle/fluid/pybind/bind_fleet_executor.h"
#include "paddle/fluid/pybind/box_helper_py.h"
#include "paddle/fluid/pybind/communication.h"
#include "paddle/fluid/pybind/compatible.h"
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/data_set_py.h"
#include "paddle/fluid/pybind/exception.h"
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
#include "paddle/fluid/pybind/generator_py.h"
#include "paddle/fluid/pybind/global_value_getter_setter.h"
#include "paddle/fluid/pybind/gloo_context_py.h"
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
#include "paddle/fluid/pybind/heter_wrapper_py.h"
#include "paddle/fluid/pybind/inference_api.h"
#include "paddle/fluid/pybind/ir.h"
#include "paddle/fluid/pybind/metrics_py.h"
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
116
#include "paddle/fluid/pybind/pybind_variant_caster.h"
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
#include "paddle/phi/backends/device_manager.h"

#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
#endif
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
#include "paddle/fluid/pybind/reader_py.h"
#include "paddle/fluid/pybind/tensor_py.h"
#include "paddle/fluid/string/to_string.h"
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
#endif
#ifndef PADDLE_WITH_HIP
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
#endif
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
#endif

#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device/npu/npu_info.h"
#endif

#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
#endif

#ifdef PADDLE_WITH_CUSTOM_DEVICE
#include "paddle/phi/capi/capi.h"
#endif

#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"

#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
#endif

#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

#if defined PADDLE_WITH_PSCORE
#include "paddle/fluid/pybind/fleet_py.h"
#endif

#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

#include "paddle/fluid/eager/api/utils/global_utils.h"
#include "paddle/fluid/imperative/layout_autotune.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/tensor.h"
#include "paddle/phi/api/ext/op_meta_info.h"
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
#include "pybind11/stl.h"

DECLARE_bool(use_mkldnn);
185
DECLARE_bool(use_shm_cache);
186 187 188 189 190 191 192 193 194 195 196 197 198

// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);

namespace paddle {
namespace pybind {

PyTypeObject *g_framework_tensor_pytype = nullptr;

template <typename PlaceType>
199 200
static void TensorCopyFrom(phi::DenseTensor *dst,
                           const phi::DenseTensor &src,
201 202 203 204 205 206 207 208 209 210 211 212
                           const PlaceType &place,
                           int64_t batch_size) {
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

void BindTensor(pybind11::module &m) {  // NOLINT
  using namespace paddle::framework;    // NOLINT
213
  py::class_<phi::DenseTensor> framework_tensor(
214 215 216 217 218
      m, "Tensor", py::buffer_protocol());
  g_framework_tensor_pytype =
      reinterpret_cast<PyTypeObject *>(framework_tensor.ptr());
  framework_tensor
      .def("__array__",
219
           [](phi::DenseTensor &self) { return TensorToPyArray(self); })
220
      .def("_ptr",
221
           [](const phi::DenseTensor &self) {
222 223
             return reinterpret_cast<uintptr_t>(self.data());
           })
224 225
      .def("_slice", &phi::DenseTensor::Slice)
      .def("_numel", &phi::DenseTensor::numel)
226
      .def("_is_initialized",
227
           [](const phi::DenseTensor &self) { return self.IsInitialized(); })
228
      .def("_get_dims",
229
           [](const phi::DenseTensor &self) { return vectorize(self.dims()); })
230
      .def("_set_dims",
231
           [](phi::DenseTensor &self, const std::vector<int64_t> &dim) {
232 233 234
             self.Resize(phi::make_ddim(dim));
           })
      .def("_set_layout",
235
           [](phi::DenseTensor &self, const std::string &layout) {
236
             self.set_layout(phi::StringToDataLayout(layout));
237 238
           })
      .def("_alloc_float",
239
           [](phi::DenseTensor &self, paddle::platform::CustomPlace &place) {
240 241 242
             self.mutable_data<float>(place);
           })
      .def("_alloc_float",
243
           [](phi::DenseTensor &self, paddle::platform::CUDAPlace &place) {
244 245 246
             self.mutable_data<float>(place);
           })
      .def("_alloc_float",
247
           [](phi::DenseTensor &self, paddle::platform::XPUPlace &place) {
248 249 250
             self.mutable_data<float>(place);
           })
      .def("_alloc_float",
251
           [](phi::DenseTensor &self, paddle::platform::CPUPlace &place) {
252 253 254
             self.mutable_data<float>(place);
           })
      .def("_alloc_float",
255
           [](phi::DenseTensor &self, paddle::platform::NPUPlace &place) {
256 257 258
             self.mutable_data<float>(place);
           })
      .def("_alloc_float",
259
           [](phi::DenseTensor &self, paddle::platform::MLUPlace &place) {
260 261 262
             self.mutable_data<float>(place);
           })
      .def("_alloc_double",
263
           [](phi::DenseTensor &self, paddle::platform::CPUPlace &place) {
264 265 266
             self.mutable_data<double>(place);
           })
      .def("_alloc_int",
267
           [](phi::DenseTensor &self, paddle::platform::CPUPlace &place) {
268 269 270
             self.mutable_data<int>(place);
           })
      .def("_alloc_int",
271
           [](phi::DenseTensor &self, paddle::platform::CustomPlace &place) {
272 273 274
             self.mutable_data<int>(place);
           })
      .def("_alloc_int",
275
           [](phi::DenseTensor &self, paddle::platform::XPUPlace &place) {
276 277 278
             self.mutable_data<int>(place);
           })
      .def("_alloc_int",
279
           [](phi::DenseTensor &self, paddle::platform::CUDAPlace &place) {
280 281 282
             self.mutable_data<int>(place);
           })
      .def("_alloc_int",
283
           [](phi::DenseTensor &self, paddle::platform::MLUPlace &place) {
284 285
             self.mutable_data<int>(place);
           })
286 287 288 289 290 291 292 293 294 295
      .def(
          "_alloc_int",
          [](phi::DenseTensor &self, paddle::platform::CUDAPinnedPlace &place) {
            self.mutable_data<int>(place);
          })
      .def(
          "_alloc_float",
          [](phi::DenseTensor &self, paddle::platform::CUDAPinnedPlace &place) {
            self.mutable_data<float>(place);
          })
296
      .def("_mutable_data",
297
           [](phi::DenseTensor &self,
298 299 300 301 302 303
              paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
           })
      .def("_mutable_data",
304
           [](phi::DenseTensor &self,
305 306 307 308 309 310
              paddle::platform::CustomPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
           })
      .def("_mutable_data",
311
           [](phi::DenseTensor &self,
312 313 314 315 316 317
              paddle::platform::XPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
           })
      .def("_mutable_data",
318
           [](phi::DenseTensor &self,
319 320 321 322 323 324
              paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
           })
      .def("_mutable_data",
325
           [](phi::DenseTensor &self,
326 327 328 329 330 331
              paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
           })
      .def("_mutable_data",
332
           [](phi::DenseTensor &self,
333 334 335 336 337
              paddle::platform::MLUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
           })
338
      .def("_clear", &phi::DenseTensor::clear)
339
      .def("_mutable_data",
340
           [](phi::DenseTensor &self,
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
              paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
           })
      .def("_copy_from",
           &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("batch_size") = -1)
      .def("_copy_from",
           &TensorCopyFrom<paddle::platform::CustomPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("batch_size") = -1)
      .def("_copy_from",
           &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("batch_size") = -1)
      .def("_copy_from",
           &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("batch_size") = -1)
      .def("_copy_from",
           &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("batch_size") = -1)
      .def("_copy_from",
           &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("batch_size") = -1)
      .def("_copy_from",
           &TensorCopyFrom<paddle::platform::MLUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("batch_size") = -1)
A
Allen Guo 已提交
381 382 383 384 385
      .def("_copy_from",
           &TensorCopyFrom<paddle::platform::IPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("batch_size") = -1)
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
      .def("_copy_from",
           &TensorCopyFrom<paddle::platform::Place>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("batch_size") = -1)
      .def("set",
           SetTensorFromPyArray<paddle::platform::CPUPlace>,
           py::arg("array"),
           py::arg("place"),
           py::arg("zero_copy") = false)
      .def("set",
           SetTensorFromPyArray<paddle::platform::CustomPlace>,
           py::arg("array"),
           py::arg("place"),
           py::arg("zero_copy") = false)
      .def("set",
           SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"),
           py::arg("place"),
           py::arg("zero_copy") = false)
      .def("set",
           SetTensorFromPyArray<paddle::platform::CUDAPlace>,
           py::arg("array"),
           py::arg("place"),
           py::arg("zero_copy") = false)
      .def("set",
           SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"),
           py::arg("place"),
           py::arg("zero_copy") = false)
      .def("set",
           SetTensorFromPyArray<paddle::platform::IPUPlace>,
           py::arg("array"),
           py::arg("place"),
           py::arg("zero_copy") = false)
      .def("set",
           SetTensorFromPyArray<paddle::platform::MLUPlace>,
           py::arg("array"),
           py::arg("place"),
           py::arg("zero_copy") = false)
      .def("set",
           SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
           py::arg("array"),
           py::arg("place"),
           py::arg("zero_copy") = false,
           R"DOC(
        Set the data of Tensor on place with given numpy array.
433

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
        Args:
          lod (numpy.ndarray): The data to set.
          place (CPUPlace|CUDAPlace|XPUPlace|IPUPlace|CUDAPinnedPlace|NPUPlace|MLUPlace): The place where the
          Tensor is to be set.
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.Tensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")

      .def(
          "shape",
456
          [](phi::DenseTensor &self) { return vectorize(self.dims()); },
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
          R"DOC(
           Return the shape of Tensor.

           Returns:
               list[int]: The shape of Tensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.Tensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
      .def("_to_dlpack",
475
           [](phi::DenseTensor &self) {
476 477
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
D
DesmonDay 已提交
478
             auto capsule = pybind11::capsule(
479
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
D
DesmonDay 已提交
480 481
                   if (!PyCapsule_IsValid(ptr, "dltensor")) {
                     return;
482
                   }
D
DesmonDay 已提交
483 484 485
                   DLManagedTensor *dmt = static_cast<DLManagedTensor *>(
                       PyCapsule_GetPointer(ptr, "dltensor"));
                   dmt->deleter(dmt);
486 487 488 489 490 491 492
                 });
             return capsule;
           })
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
493
      .def("_place", [](phi::DenseTensor &self) { return self.place(); })
494
      .def("_dtype",
495
           [](phi::DenseTensor &self) {
496 497 498
             return framework::TransToProtoVarType(self.type());
           })
      .def("_layout",
499
           [](phi::DenseTensor &self) {
500
             return phi::DataLayoutToString(self.layout());
501
           })
502
      .def("_share_data_with", &phi::DenseTensor::ShareDataWith)
503 504
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__",
505
           [](const phi::DenseTensor &self) {
506 507 508 509 510
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           }) /* ------ End of original Tensor ------ */
      .def("__init__",
511
           [](phi::DenseTensor &instance,
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
              const std::vector<std::vector<size_t>>
                  &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1),
                 true,
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is "
                     "invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
528
             new (&instance) phi::DenseTensor(new_offset_lod);
529 530
           })
      .def("__init__",
531 532
           [](phi::DenseTensor &instance) {
             new (&instance) phi::DenseTensor();
533 534 535 536 537 538 539 540 541
           })
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
      .def(
          "set_lod",
542
          [](phi::DenseTensor &self,
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
             const std::vector<std::vector<size_t>> &lod) {
            // the input lod is offset-based level-of-detail info
            LoD new_lod;
            new_lod.reserve(lod.size());
            std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
            PADDLE_ENFORCE_EQ(
                CheckLoD(new_lod, vectorize(self.dims()).front()),
                true,
                platform::errors::InvalidArgument(
                    "The provided LoD is invalid, the LoD is %s", new_lod));
            self.set_lod(new_lod);
          },
          py::arg("lod"),
          R"DOC(
           Set LoD of the Tensor.

           Args:
               lod (list[list[int]]): The lod to set.

           Returns:
                None.

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.Tensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
           )DOC")
      .def(
          "set_recursive_sequence_lengths",
578
          [](phi::DenseTensor &self,
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
             const std::vector<std::vector<size_t>>
                 &recursive_sequence_lengths) {
            // the input recursive_sequence_lengths is length-based
            // level-of-detail info
            LoD new_lod;
            new_lod.reserve(recursive_sequence_lengths.size());
            std::copy(recursive_sequence_lengths.begin(),
                      recursive_sequence_lengths.end(),
                      std::back_inserter(new_lod));
            LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
            PADDLE_ENFORCE_EQ(
                CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                true,
                platform::errors::InvalidArgument(
                    "The provided recursive_sequence_lengths info is "
                    "invalid, "
                    "the LoD converted by recursive_sequence_lengths is "
                    "%s",
                    new_lod));
            self.set_lod(new_offset_lod);
          },
          py::arg("recursive_sequence_lengths"),
          R"DOC(
           Set LoD of the Tensor according to recursive sequence lengths.

           For example, if recursive_sequence_lengths=[[2, 3]], which means
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].

           Args:
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
610

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
           Returns:
                None.

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.Tensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
           )DOC")
      .def(
          "lod",
628
          [](phi::DenseTensor &self) -> std::vector<std::vector<size_t>> {
629 630 631 632 633 634 635 636 637 638 639 640
            // output the offset-based lod info
            LoD lod = self.lod();
            std::vector<std::vector<size_t>> new_lod;
            new_lod.reserve(lod.size());
            std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
            return new_lod;
          },
          R"DOC(
           Return the LoD of the Tensor.

           Returns:
               list[list[int]]: The lod of the Tensor.
641

642 643 644 645 646 647 648 649 650 651 652 653 654 655
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.Tensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
           )DOC")
      // Set above comments of set_lod.
      .def(
          "recursive_sequence_lengths",
656
          [](phi::DenseTensor &self) -> std::vector<std::vector<size_t>> {
657 658 659 660 661 662 663 664
            // output the length-based lod info
            LoD lod = phi::ConvertToLengthBasedLoD(self.lod());
            std::vector<std::vector<size_t>> new_lod;
            new_lod.reserve(lod.size());
            std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
            return new_lod;
          },
          R"DOC(
665
           Return the recursive sequence lengths corresponding to of the LodD
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
           of the Tensor.

           Returns:
                list[list[int]]: The recursive sequence lengths.

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.Tensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
           )DOC")
      .def(
          "has_valid_recursive_sequence_lengths",
684
          [](phi::DenseTensor &self) -> bool {
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
            // Check that the lod info is valid and match the outermost
            // dimension of the Tensor data
            return CheckLoD(self.lod(), vectorize(self.dims()).front());
          },
          R"DOC(
           Check whether the LoD of the Tensor is valid.

           Returns:
               bool: Whether the LoD is valid.

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.Tensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
           )DOC")
      .def("_as_type",
707
           [](const phi::DenseTensor &self,
708
              paddle::framework::proto::VarType::Type type) {
709
             phi::DenseTensor dst;
710 711 712 713 714 715
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
      .def("_copy",
716
           [](const phi::DenseTensor &self, const platform::Place &place) {
717
             // follow fetch_op's inplementation
718
             phi::DenseTensor dst;
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
             if (self.IsInitialized() && self.numel() > 0) {
               TensorCopySync(self, place, &dst);
             } else {
               // Not copy, if the src tensor is empty.
               dst.clear();
               dst.Resize({0});
             }
             dst.set_lod(self.lod());
             return dst;
#ifdef _WIN32
           });
#else
           })
#ifdef PADDLE_WITH_CUDA
      .def("_share_buffer_with",
734
           [](phi::DenseTensor &self, const phi::DenseTensor src,
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
              py::tuple t) {
             auto *cuda_ipc_allocation =
                 dynamic_cast<memory::allocation::CudaIpcAllocation *>(
                     src.Holder().get());

             PADDLE_ENFORCE_NOT_NULL(
                 cuda_ipc_allocation,
                 platform::errors::PreconditionNotMet(
                     "Tensor is not Cuda IPC shared tensor. "
                     "Now only Tensor shared by cuda ipc could use this "
                     "api."));

             size_t size = t[0].cast<size_t>();
             auto dtype =
                 static_cast<paddle::experimental::DataType>(t[1].cast<int>());
             auto dims = phi::make_ddim(t[2].cast<std::vector<int>>());
             auto lod_info = t[3].cast<framework::LoD>();
             auto device_id = t[4].cast<int>();

             auto shared_reader_holder =
                 std::make_shared<memory::allocation::Allocation>(
                     cuda_ipc_allocation->ptr(),
                     cuda_ipc_allocation->base_ptr(), size,
                     platform::CUDAPlace(device_id));

             self.ResetHolderWithType(shared_reader_holder, dtype);
             self.Resize(dims);
             self.set_lod(lod_info);

             VLOG(6) << "Reconstructed tensor with buffer shared!";
           },
           R"DOC(
           Deserialize GPU Tensor for existed shared Cuda IPC tensor.

           Params:
               tensor: Shared Cuda IPC tensor.
               tuple: contrains data size, data type,
                      tensor dims, lod information, device index.

       )DOC")
      .def("_share_cuda",
776
           [](phi::DenseTensor self) {
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
             if (!self.IsInitialized() || self.numel() == 0)
               throw std::runtime_error(
                   "Tensor not initialized or numel is 0.  could not pass "
                   "to shared memory. ");

             auto *holder = dynamic_cast<memory::allocation::Allocation *>(
                 self.Holder().get());
             PADDLE_ENFORCE_EQ(
                 platform::is_gpu_place(holder->place()), true,
                 platform::errors::InvalidArgument(
                     "Tensor is not on GPU. share_cuda only support GPU "
                     "Tensor, share_filename is for CPU tensor."));

             void *base_ptr = holder->base_ptr();
             ptrdiff_t offset_bytes = reinterpret_cast<char *>(holder->ptr()) -
                                      reinterpret_cast<char *>(base_ptr);

             cudaIpcMemHandle_t handle;
             PADDLE_ENFORCE_GPU_SUCCESS(cudaIpcGetMemHandle(&handle, base_ptr));

             auto _handle = py::bytes(reinterpret_cast<char *>(&handle),
                                      (py::ssize_t)CUDA_IPC_HANDLE_SIZE);

             // TODO(ZHUI): use cuda event, to avoid sync.
             const auto &device_id = paddle::platform::GetCurrentDeviceId();
             auto stream =
L
Leo Chen 已提交
803
                 paddle::platform::get_current_stream(device_id);
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
             stream->Synchronize();

             int type_idx = static_cast<int>(self.type());
             size_t data_size =
                 self.numel() *
                 framework::SizeOfType(
                     framework::TransToProtoVarType(self.type()));

             return py::make_tuple(_handle, (py::size_t)offset_bytes, data_size,
                                   type_idx, vectorize(self.dims()), self.lod(),
                                   device_id);
           },
           R"DOC(
           Serialize GPU Tensor by cudaIpcMemHandle.

           Returns:
               tuple: contrains handle, data size, data type,
                      tensor dims, lod information, device index.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_cuda()

      )DOC")
      .def("_new_shared_cuda",
           [](py::tuple t) {
             if (t.size() != 7)
               throw std::runtime_error(
                   "Invalid Tensor meta info for shared cuda tensor!");

             // 1. Create a new C++ instance
838
             phi::DenseTensor tensor;
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879

             // 2. Rebuild Allocation from handle
             const std::string &handle = t[0].cast<std::string>();
             ptrdiff_t offset_bytes = (ptrdiff_t)t[1].cast<int64_t>();
             auto device_id = t[6].cast<int>();
             auto base_ptr = memory::allocation::GetIpcBasePtr(handle);
             size_t size = t[2].cast<size_t>();
             void *dev = base_ptr.get();
             dev = reinterpret_cast<char *>(dev) + offset_bytes;

             auto shared_reader_holder =
                 std::make_shared<memory::allocation::CudaIpcAllocation>(
                     dev, size, device_id, std::move(base_ptr));

             // 3. Rebuild Tensor
             tensor.ResetHolderWithType(
                 shared_reader_holder,
                 static_cast<paddle::experimental::DataType>(t[3].cast<int>()));
             tensor.Resize(phi::make_ddim(t[4].cast<std::vector<int>>()));
             tensor.set_lod(t[5].cast<framework::LoD>());

             return tensor;
           },
           R"DOC(
           Deserialize GPU lod tensor from cudaIpcMemHandle.

           Params:
               tuple: contrains handle, data size, data type,
                      tensor dims, lod information, device index.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_cuda()
                 tensor_from_shared = paddle.to_tensor(paddle.fluid.core.LoDTensor._new_shared_cuda(metainfo))

        )DOC")
#endif
      .def("_share_filename",
880
           [](phi::DenseTensor &self) {
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
             if (!self.IsInitialized() || self.numel() == 0)
               throw std::runtime_error(
                   "Tensor not initialized or numel is 0. could not pass to "
                   "shared memory. ");

             auto holder = self.Holder();
             PADDLE_ENFORCE_EQ(
                 platform::is_cpu_place(holder->place()) ||
                     platform::is_cuda_pinned_place(holder->place()),
                 true, platform::errors::InvalidArgument(
                           "Tensor is not on CPU. share_filename only "
                           "support CPU Tensor."));

             auto *mmap_allocation = dynamic_cast<
                 memory::allocation::RefcountedMemoryMapAllocation *>(
                 holder.get());
             // If the tensor is not shared, allocate memory map allocation.
             if (mmap_allocation == nullptr) {
               void *data_ptr = self.data();
               size_t data_size =
                   self.numel() *
                   framework::SizeOfType(
                       framework::TransToProtoVarType(self.type()));

               int flags = memory::allocation::MAPPED_SHAREDMEM |
                           memory::allocation::MAPPED_EXCLUSIVE;
               std::string handle = memory::allocation::GetIPCName();
908 909 910 911 912 913 914
               int find_id = -1;
               if (FLAGS_use_shm_cache) {
                 find_id = memory::allocation::MemoryMapAllocationPool::Instance().FindFromCache(flags, data_size); // NOLINT
               }
               if (find_id != -1) {
                 handle = memory::allocation::MemoryMapAllocationPool::Instance().GetById(find_id).file_name_; // NOLINT
               }
915 916
               auto shared_holder =
                   memory::allocation::AllocateRefcountedMemoryMapAllocation(
917
                       handle, flags, data_size, find_id);
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958

               // copy data & reset holder
               if (platform::is_cuda_pinned_place(holder->place())) {
#ifdef PADDLE_WITH_CUDA
                 memory::Copy(platform::CPUPlace(), shared_holder->ptr(),
                              platform::CUDAPinnedPlace(), data_ptr, data_size);
#endif
               } else {
                 memory::Copy(platform::CPUPlace(), shared_holder->ptr(),
                              platform::CPUPlace(), data_ptr, data_size);
               }
               self.ResetHolder(shared_holder);
               mmap_allocation = shared_holder.get();
             }
             int type_idx = static_cast<int>(self.type());

             return py::make_tuple(mmap_allocation->ipc_name(),
                                   mmap_allocation->size(), type_idx,
                                   vectorize(self.dims()), self.lod());
           },
           R"DOC(
           Serialize CPU lod tensor in shared memory to tuple.
           If the tensor is not in shared memory, we will copy it first.

           Returns:
               tuple: contrains ipc name, data size, data type,
                      tensor dims and lod imformation.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_filename()

       )DOC")
      .def("_new_shared_filename",
           [](py::tuple t) {  // __setstate__
             if (t.size() != 5)
               throw std::runtime_error("Invalid Tensor meta info state!");

959
             phi::DenseTensor tensor;
960 961 962 963 964 965

             // 2. Rebuild Allocation
             const std::string &ipc_name = t[0].cast<std::string>();
             size_t size = t[1].cast<size_t>();
             int flags = memory::allocation::MAPPED_SHAREDMEM |
                         memory::allocation::MAPPED_NOCREATE;
966 967 968 969
             int find_id = -1;
             if (FLAGS_use_shm_cache) {
               find_id = memory::allocation::MemoryMapAllocationPool::Instance().FindFromCache(flags, size, ipc_name, /*check_refcount*/ false); // NOLINT
             }
970 971
             auto shared_holder =
                 memory::allocation::AllocateRefcountedMemoryMapAllocation(
972
                     ipc_name, flags, size, find_id);
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999

             // 3. Rebuild Tensor
             tensor.ResetHolderWithType(
                 shared_holder,
                 static_cast<paddle::experimental::DataType>(t[2].cast<int>()));
             tensor.Resize(phi::make_ddim(t[3].cast<std::vector<int>>()));
             tensor.set_lod(t[4].cast<framework::LoD>());

             return tensor;
           },
           R"DOC(
           Deserialize CPU lod tensor from shared memory.

           Params:
               tuple: contrains ipc file name, data size, data type,
                      tensor dims and lod information.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_filename()
                 tensor_from_shared = paddle.to_tensor(paddle.fluid.core.LoDTensor._new_shared_filename(metainfo))

        )DOC")
      .def("_shared_incref",
1000
           [](phi::DenseTensor &self) {
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
             auto *mmap_allocation = dynamic_cast<
                 memory::allocation::RefcountedMemoryMapAllocation *>(
                 self.Holder().get());
             if (mmap_allocation) {
               mmap_allocation->incref();
             }
           },
           R"DOC(
            Increase reference count of share_filename tensor.
      )DOC")
      .def("_shared_decref",
1012
           [](phi::DenseTensor &self) {
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
             auto *mmap_allocation = dynamic_cast<
                 memory::allocation::RefcountedMemoryMapAllocation *>(
                 self.Holder().get());
             if (mmap_allocation) {
               mmap_allocation->decref();
             }
           },
           R"DOC(
            Decrease reference count of share_filename tensor.
      )DOC")
      .def(py::pickle(
1024
          [](const phi::DenseTensor &t) {  // __getstate__
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(holder->place()), true,
                              platform::errors::PreconditionNotMet(
                                  "Tensor is not on CPU."
                                  "Now only Tensor on CPU can be serialized."));
            auto *mmap_writer_allocation =
                dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                    holder.get());
            PADDLE_ENFORCE_NOT_NULL(
                mmap_writer_allocation,
                platform::errors::PreconditionNotMet(
                    "Tensor is not in shared memory."
                    "Now only Tensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(), type_idx,
                                  vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid Tensor state!");

            // 1. Create a new C++ instance
1049
            phi::DenseTensor tensor;
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
                memory::allocation::RebuildMemoryMapReaderAllocation(ipc_name,
                                                                     size);

            // 3. Maintain global fd set
            VLOG(3) << "Tensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild Tensor
            tensor.ResetHolderWithType(
                shared_reader_holder,
                static_cast<paddle::experimental::DataType>(t[2].cast<int>()));
            tensor.Resize(phi::make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif

  py::class_<phi::SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](phi::SelectedRows &instance) {
             new (&instance) phi::SelectedRows();
           })
      .def("__init__",
           [](phi::SelectedRows &instance,
              const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) phi::SelectedRows(rows, height);
           })
      .def(
          "get_tensor",
          [](phi::SelectedRows &self) { return self.mutable_value(); },
          py::return_value_policy::reference)
      .def("numel",
           [](phi::SelectedRows &self) -> int64_t {
             return self.value().numel();
           })
      .def("set_height", &phi::SelectedRows::set_height)
      .def("height", &phi::SelectedRows::height)
      .def("set_rows",
           [](phi::SelectedRows &self, std::vector<int64_t> rows) {
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
      .def("sync_index",
           [](phi::SelectedRows &instance) { instance.SyncIndex(); })
      .def("rows", [](phi::SelectedRows &self) {
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
      });
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

  py::class_<phi::SparseCooTensor>(m, "SparseCooTensor")
      .def("__init__",
           [](phi::SparseCooTensor &instance) {
             new (&instance) phi::SparseCooTensor();
           })
      .def("numel",
           [](const phi::SparseCooTensor &self) -> int64_t {
             return self.numel();
           })
1122 1123 1124
      .def("indices", [](const phi::SparseCooTensor &self) -> phi::DenseTensor {
        return self.indices();
      });
1125 1126 1127 1128
}

}  // namespace pybind
}  // namespace paddle