kthvalue_kernel.cc 5.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/kthvalue_kernel.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace phi {
template <typename T, typename Type>
static void getKthvalue(Type input_height,
                        Type input_width,
                        int input_dim,
                        const DenseTensor* input,
                        T* t_out,
                        Type* t_indices,
                        const int& k) {
  bool partial_sort_flag = (k * 64) < input_width;
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (Type i = 0; i < input_height; ++i) {
    std::vector<std::pair<T, Type>> col_vec;
    col_vec.reserve(input_width);
    if (input_dim == 1) {
      auto e_input = EigenVector<T>::Flatten(*input);
      for (Type j = 0; j < input_width; ++j) {
        col_vec.emplace_back(std::pair<T, Type>(e_input(j), j));
      }
    } else {
      auto e_input = EigenMatrix<T>::Reshape(*input, input_dim - 1);
      for (Type j = 0; j < input_width; ++j) {
        col_vec.emplace_back(std::pair<T, Type>(e_input(i, j), j));
      }
    }
    if (partial_sort_flag) {
      std::partial_sort(
          col_vec.begin(),
          col_vec.begin() + k,
          col_vec.end(),
          [](const std::pair<T, Type>& l, const std::pair<T, Type>& r) {
            return (!std::isnan(static_cast<double>(l.first)) &&
                    std::isnan(static_cast<double>(r.first))) ||
                   (l.first < r.first);
          });
    } else {
      std::nth_element(
          col_vec.begin(),
          col_vec.begin() + k - 1,
          col_vec.end(),
          [](const std::pair<T, Type>& l, const std::pair<T, Type>& r) {
            return (!std::isnan(static_cast<double>(l.first)) &&
                    std::isnan(static_cast<double>(r.first))) ||
                   (l.first < r.first);
          });
    }
    t_out[i] = col_vec[k - 1].first;
    t_indices[i] = col_vec[k - 1].second;
  }
}

template <typename T, typename Context>
void KthvalueKernel(const Context& dev_ctx,
                    const DenseTensor& x,
                    int k,
                    int axis,
                    bool keepdim,
                    DenseTensor* output,
                    DenseTensor* indices) {
  const auto& in_dims = x.dims();
  if (axis < 0) axis += in_dims.size();
  T* output_data = dev_ctx.template Alloc<T>(output);
  int64_t* indices_data = dev_ctx.template Alloc<int64_t>(indices);
  auto out_dims = output->dims();
  if (axis == in_dims.size() - 1) {
    const int64_t& input_height =
        phi::product(phi::slice_ddim(in_dims, 0, in_dims.size() - 1));
    const int64_t& input_width = in_dims[in_dims.size() - 1];
    getKthvalue<T, int64_t>(input_height,
                            input_width,
                            in_dims.size(),
                            &x,
                            output_data,
                            indices_data,
                            k);
  } else {
    std::vector<int> trans;
    for (int i = 0; i < axis; i++) {
      trans.emplace_back(i);
    }
    trans.emplace_back(in_dims.size() - 1);
    for (int i = axis + 1; i < in_dims.size() - 1; i++) {
      trans.emplace_back(i);
    }
    trans.emplace_back(axis);
    if (!keepdim) {
      std::vector<int> tmp_out_shape;
      for (int i = 0; i < axis; i++) {
        tmp_out_shape.emplace_back(in_dims[i]);
      }
      tmp_out_shape.emplace_back(1);
      for (int i = axis + 1; i < in_dims.size(); i++) {
        tmp_out_shape.emplace_back(in_dims[i]);
      }
      DDim tmp_out_dims = phi::make_ddim(tmp_out_shape);
      output->Resize(tmp_out_dims);
      indices->Resize(tmp_out_dims);
    }
    DDim trans_dims(in_dims);
    DDim trans_out_dims(in_dims);

    for (size_t i = 0; i < trans.size(); i++) {
      trans_dims[i] = in_dims[trans[i]];
      trans_out_dims[i] = in_dims[trans[i]];
    }
    trans_out_dims[in_dims.size() - 1] = 1;
    DenseTensor trans_inp;
    trans_inp.Resize(trans_dims);
    dev_ctx.template Alloc<T>(&trans_inp);
    int ndims = trans.size();
    funcs::TransCompute<phi::CPUContext, T>(
        ndims, dev_ctx, x, &trans_inp, trans);

    const int64_t input_height =
        phi::product(phi::slice_ddim(trans_dims, 0, trans_dims.size() - 1));
    const int64_t input_width = trans_dims[trans_dims.size() - 1];
    DenseTensor tmp_out, tmp_indices;
    tmp_out.Resize(trans_out_dims);
    T* t_out = dev_ctx.template Alloc<T>(&tmp_out);
    tmp_indices.Resize(trans_out_dims);
    int64_t* t_ind = dev_ctx.template Alloc<int64_t>(&tmp_indices);
    getKthvalue<T, int64_t>(
        input_height, input_width, in_dims.size(), &trans_inp, t_out, t_ind, k);
    funcs::TransCompute<phi::CPUContext, int64_t>(
        ndims, dev_ctx, tmp_indices, indices, trans);
    funcs::TransCompute<phi::CPUContext, T>(
        ndims, dev_ctx, tmp_out, output, trans);
    if (!keepdim) {
      output->Resize(out_dims);
      indices->Resize(out_dims);
    }
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(kthvalue,
                   CPU,
                   ALL_LAYOUT,
                   phi::KthvalueKernel,
                   float,
                   double,
                   int,
                   int64_t) {}