unpool_op.cc 9.8 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
S
sweetsky0901 已提交
14

15
#include <memory>
16 17
#include <string>
#include <vector>
X
xiaoting 已提交
18 19 20 21 22 23

#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/binary.h"

S
sweetsky0901 已提交
24 25 26 27 28
namespace paddle {
namespace operators {

class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
29
  void Make() override {
S
sweetsky0901 已提交
30 31
    AddInput(
        "X",
S
sweetsky0901 已提交
32 33 34
        "(Tensor) The input tensor of unpool operator. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
S
sweetsky0901 已提交
35 36
    AddInput(
        "Indices",
S
sweetsky0901 已提交
37 38 39
        "(Tensor) The input tensor of the indices given out by MaxPool2d. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
S
sweetsky0901 已提交
40
    AddOutput("Out",
S
sweetsky0901 已提交
41 42 43 44 45
              "(Tensor) The output tensor of unpool operator."
              "The format of output tensor is also NCHW."
              "Where N is batch size, C is "
              "the number of channels, H and W is the height and "
              "width of feature.");
S
sweetsky0901 已提交
46 47
    AddAttr<std::vector<int>>(
        "ksize",
S
sweetsky0901 已提交
48
        "(vector), the unpooling window size(height, width) "
S
sweetsky0901 已提交
49
        "of unpooling operator.");
S
sweetsky0901 已提交
50 51 52
    AddAttr<std::vector<int>>("strides",
                              "(vector, default:{1, 1}), "
                              "strides (height, width) of unpooling operator.")
S
sweetsky0901 已提交
53
        .SetDefault({1, 1});
S
sweetsky0901 已提交
54
    AddAttr<std::vector<int>>("paddings",
翟飞跃 已提交
55
                              "(vector default:{0,0}), "
S
sweetsky0901 已提交
56
                              "paddings (height, width) of unpooling operator.")
S
sweetsky0901 已提交
57
        .SetDefault({0, 0});
S
sweetsky0901 已提交
58 59
    AddAttr<std::string>(
        "unpooling_type",
S
sweetsky0901 已提交
60 61
        "(string), unpooling type, can be \"max\" for max-unpooling ")
        .InEnum({"max"});
62 63 64 65 66 67 68 69 70 71
    AddAttr<std::vector<int>>("output_size",
                              "(vector, optional). The shape of output.")
        .SetDefault({0, 0});
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("NCHW");
S
sweetsky0901 已提交
72
    AddComment(R"DOC(
Y
ying 已提交
73 74
Input shape is: $(N, C_{in}, H_{in}, W_{in})$, Output shape is:
$(N, C_{out}, H_{out}, W_{out})$, where
Y
ying 已提交
75
$$
P
peizhilin 已提交
76 77
H_{out} = (H_{in}-1) * strides[0] - 2 * paddings[0] + ksize[0] \\
W_{out} = (W_{in}-1) * strides[1] - 2 * paddings[1] + ksize[1]
Y
ying 已提交
78 79 80
$$
Paper: http://www.matthewzeiler.com/wp-content/uploads/2017/07/iccv2011.pdf
)DOC");
S
sweetsky0901 已提交
81 82 83
  }
};

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
class Unpool3dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput(
        "X",
        "(Tensor) The input tensor of unpool operator. "
        "The format of input tensor is NCDHW. Where N is batch size, C is the "
        "number of channels, D, H and W is the depth, height and width of "
        "feature.");
    AddInput(
        "Indices",
        "(Tensor) The input tensor of the indices given out by MaxPool3d. "
        "The format of input tensor is NCDHW. Where N is batch size, C is the "
        "number of channels, D, H and W is the depth, height and width of "
        "feature.");
    AddOutput("Out",
              "(Tensor) The output tensor of unpool operator."
              "The format of output tensor is also NCDHW."
              "Where N is batch size, C is "
              "the number of channels, D, H and W is the depth, height and "
              "width of feature.");
    AddAttr<std::vector<int>>(
        "ksize",
        "(vector), the unpooling window size(depth, height, width) "
        "of unpooling operator.");
    AddAttr<std::vector<int>>(
        "strides",
        "(vector, default:{1, 1, 1}), "
        "strides (depth, height, width) of unpooling operator.")
        .SetDefault({1, 1, 1});
    AddAttr<std::vector<int>>(
        "paddings",
        "(vector default:{0, 0,0}), "
        "paddings (depth, height, width) of unpooling operator.")
        .SetDefault({0, 0, 0});
    AddAttr<std::string>(
        "unpooling_type",
        "(string), unpooling type, can be \"max\" for max-unpooling ")
        .InEnum({"max"});
    AddAttr<std::vector<int>>("output_size",
                              "(vector, optional). The shape of output.")
        .SetDefault({0, 0, 0});
    AddAttr<std::string>(
        "data_format",
        "(string, default NCDHW)"
        "Defaults to \"NCDHW\". Specify the data format of the output data, ")
        .SetDefault("NCDHW");
    AddComment(R"DOC(
Input shape is: $(N, C_{in}, D_{in}, H_{in}, W_{in})$, Output shape is:
$(N, C_{out}, D_{out}, H_{out}, W_{out})$, where
$$
D_{out} = (D_{in}-1) * strides[0] - 2 * paddings[0] + ksize[0] \\
H_{out} = (H_{in}-1) * strides[1] - 2 * paddings[1] + ksize[1] \\
W_{out} = (W_{in}-1) * strides[2] - 2 * paddings[2] + ksize[2]
$$
)DOC");
  }
};

Y
Yang Yang 已提交
143
int UnpoolOutputSize(int input_size, int ksize, int padding, int stride) {
S
sweetsky0901 已提交
144
  int output_size = (input_size - 1) * stride - 2 * padding + ksize;
S
sweetsky0901 已提交
145 146 147 148
  return output_size;
}

class UnpoolOp : public framework::OperatorWithKernel {
S
sweetsky0901 已提交
149
 protected:
150
  framework::OpKernelType GetExpectedKernelType(
S
sweetsky0901 已提交
151
      const framework::ExecutionContext& ctx) const override {
152 153 154
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
S
sweetsky0901 已提交
155
  }
S
sweetsky0901 已提交
156

S
sweetsky0901 已提交
157 158
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
S
sweetsky0901 已提交
159 160
};

161 162 163 164 165 166 167 168 169 170 171 172 173
class Unpool3dOp : public framework::OperatorWithKernel {
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
  }

 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
};

174 175 176 177
template <typename T>
class UnpoolOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
178
  void Apply(GradOpPtr<T> op) const override {
179 180 181 182 183 184 185 186 187 188
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Indices", this->Input("Indices"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
  }
};

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
template <typename T>
class Unpool3dOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
  void Apply(GradOpPtr<T> op) const override {
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Indices", this->Input("Indices"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
  }
};

S
sweetsky0901 已提交
204
class UnpoolOpGrad : public framework::OperatorWithKernel {
S
sweetsky0901 已提交
205
 protected:
206
  framework::OpKernelType GetExpectedKernelType(
S
sweetsky0901 已提交
207
      const framework::ExecutionContext& ctx) const override {
208 209 210
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
S
sweetsky0901 已提交
211
  }
S
sweetsky0901 已提交
212

S
sweetsky0901 已提交
213 214
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
S
sweetsky0901 已提交
215
};
216 217 218 219 220 221 222 223 224 225 226 227 228 229

class Unpool3dOpGrad : public framework::OperatorWithKernel {
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
  }

 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
};

S
sweetsky0901 已提交
230 231
}  // namespace operators
}  // namespace paddle
S
sweetsky0901 已提交
232 233

namespace ops = paddle::operators;
X
xiaoting 已提交
234 235 236
DECLARE_INFER_SHAPE_FUNCTOR(unpool,
                            UnpoolInferShapeFunctor,
                            PD_INFER_META(phi::UnpoolInferMeta));
237 238 239
REGISTER_OPERATOR(unpool,
                  ops::UnpoolOp,
                  ops::Unpool2dOpMaker,
240
                  ops::UnpoolOpGradMaker<paddle::framework::OpDesc>,
X
xiaoting 已提交
241 242
                  ops::UnpoolOpGradMaker<paddle::imperative::OpBase>,
                  UnpoolInferShapeFunctor);
H
hong 已提交
243

X
xiaoting 已提交
244 245 246 247 248 249 250 251 252
DECLARE_INFER_SHAPE_FUNCTOR(unpool_grad,
                            UnpoolGradInferShapeFunctor,
                            PD_INFER_META(phi::UnchangedInferMeta));

REGISTER_OPERATOR(unpool_grad, ops::UnpoolOpGrad, UnpoolGradInferShapeFunctor);

DECLARE_INFER_SHAPE_FUNCTOR(unpool,
                            Unpool3dInferShapeFunctor,
                            PD_INFER_META(phi::Unpool3dInferMeta));
253

254 255 256
REGISTER_OPERATOR(unpool3d,
                  ops::Unpool3dOp,
                  ops::Unpool3dOpMaker,
257
                  ops::Unpool3dOpGradMaker<paddle::framework::OpDesc>,
X
xiaoting 已提交
258 259 260 261 262 263
                  ops::Unpool3dOpGradMaker<paddle::imperative::OpBase>,
                  Unpool3dInferShapeFunctor);

DECLARE_INFER_SHAPE_FUNCTOR(unpool3d_grad,
                            Unpool3dGradInferShapeFunctor,
                            PD_INFER_META(phi::UnchangedInferMeta));
264

X
xiaoting 已提交
265 266 267
REGISTER_OPERATOR(unpool3d_grad,
                  ops::Unpool3dOpGrad,
                  Unpool3dGradInferShapeFunctor);