conv_cudnn_helper.h 21.8 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <algorithm>
18
#include <array>
19
#include <memory>
Q
qingqing01 已提交
20 21 22 23
#include <vector>
#include "paddle/fluid/framework/operator_kernel_configs.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
#include "paddle/fluid/platform/cudnn_desc.h"
24
// #include "paddle/fluid/platform/device_context.h"
Q
qingqing01 已提交
25 26 27
namespace paddle {
namespace operators {

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
using Tensor = framework::Tensor;
using DataLayout = platform::DataLayout;
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
using framework::AlgorithmsCache;
static inline void GetNCDHW(const framework::DDim& dims,
                            const DataLayout& layout, int* N, int* C, int* D,
                            int* H, int* W) {
  *N = dims[0];
  *C = layout == DataLayout::kNCHW ? dims[1] : dims[dims.size() - 1];
  int i = layout == DataLayout::kNCHW ? 0 : 1;
  if (dims.size() == 5) {
    *D = dims[2 - i];
    *H = dims[3 - i];
    *W = dims[4 - i];
  } else {
    *D = 1;
    *H = dims[2 - i];
    *W = dims[3 - i];
  }
}

template <typename DeviceContext, typename T, size_t D>
static void RemovePaddingSlice(const framework::ExecutionContext& context,
                               const Tensor* input, Tensor* out,
                               const std::vector<int>& starts,
                               const std::vector<int>& axes) {
  auto& place =
      *context.template device_context<DeviceContext>().eigen_device();
  auto in_dims = input->dims();
  auto new_out_dims = out->dims();
  auto offsets = Eigen::array<int, D>();
  auto extents = Eigen::array<int, D>();
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = new_out_dims[i];
  }

  int start;
  for (size_t i = 0; i < axes.size(); ++i) {
    start = starts[i];
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
  auto in_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *input);

  auto out_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *out, new_out_dims);
  out_t.device(place) = in_t.slice(offsets, extents);
}

85 86 87 88 89 90 91 92
template <typename T>
std::ostream& operator<<(std::ostream& out, const std::vector<T>& v) {
  out << "[";
  for (auto const& tmp : v) out << tmp << ",";
  out << "]";
  return out;
}

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
// ConvSearchCache using framework::AlgorithmsCache to search
// cudnnConvolutionFwdAlgo_t, cudnnConvolutionBwdDataAlgo_t or
// cudnnConvolutionBwdFilterAlgo_t
class ConvSearchCache {
 public:
  static ConvSearchCache& Instance() {
    static ConvSearchCache instance;
    return instance;
  }

  framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>* GetForward() {
    return &forward_cache_;
  }
  framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>* GetBackwardData() {
    return &backward_data_cache_;
  }
  framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>*
  GetBackwardFilter() {
    return &backward_filter_cache_;
  }
  framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>* GetConvFusion() {
    return &fusion_forward_cache_;
  }

 private:
  ConvSearchCache() {}
  ~ConvSearchCache() {}
  ConvSearchCache(const ConvSearchCache&) {}
  ConvSearchCache& operator=(const ConvSearchCache&) {}

  framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t> forward_cache_;
  framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>
      backward_data_cache_;
  framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>
      backward_filter_cache_;
  framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t> fusion_forward_cache_;
};
Q
qingqing01 已提交
130 131 132 133 134 135 136

struct ConvArgs {
  cudnnHandle_t handle;
  platform::TensorDescriptor idesc, odesc;
  platform::FilterDescriptor wdesc;
  platform::ConvolutionDescriptor cdesc;
  const framework::Tensor *x, *w, *o;
137
  cudnnDataType_t cudnn_dtype;
Q
qingqing01 已提交
138 139 140 141 142 143 144 145 146 147

  // strides
  std::vector<int> s;
  // paddings
  std::vector<int> p;
  // dilations
  std::vector<int> d;

  ConvArgs(const framework::Tensor* x, const framework::Tensor* w,
           const framework::Tensor* o, const std::vector<int> s,
148 149 150
           const std::vector<int> p, const std::vector<int> d,
           cudnnDataType_t dtype)
      : x(x), w(w), o(o), s(s), p(p), d(d), cudnn_dtype(dtype) {}
Q
qingqing01 已提交
151 152 153 154 155 156 157 158 159 160 161 162
};

template <typename perf_t>
struct SearchAlgorithm {};

template <>
struct SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t> {
  using perf_t = cudnnConvolutionFwdAlgoPerf_t;
  using algo_t = cudnnConvolutionFwdAlgo_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
163
                     bool deterministic,
Q
qingqing01 已提交
164 165
                     const framework::ExecutionContext& ctx) {
    auto dtype = platform::CudnnDataType<T>::type;
166
    bool has_got_workspace_size = true;
Q
qingqing01 已提交
167 168
    bool exhaustive = (exhaustive_search) & (dtype != CUDNN_DATA_HALF);
    size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
169
    size_t workspace_size = 0;
Q
qingqing01 已提交
170
    algo_t algo;
171 172 173 174

#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    if (dev_ctx.GetComputeCapability() >= 70 && dtype == CUDNN_DATA_HALF) {
175 176 177
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
                                                         CUDNN_TENSOR_OP_MATH));
178 179
      VLOG(5) << "use cudnn_tensor_op_math";
    } else {
180 181 182
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
                                                         CUDNN_DEFAULT_MATH));
183 184 185 186
      VLOG(5) << "NOT use cudnn_tensor_op_math";
    }
#endif

Q
qingqing01 已提交
187
    if (!exhaustive) {
188 189 190 191
#if CUDNN_VERSION >= 7001
      int perf_count;
      int best_algo_idx = 0;
      std::unique_ptr<perf_t[]> perf_results(new perf_t[kNUM_CUDNN_FWD_ALGS]);
192 193 194 195 196
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7(
              args.handle, args.idesc.desc(), args.wdesc.desc(),
              args.cdesc.desc(), args.odesc.desc(), kNUM_CUDNN_FWD_ALGS,
              &perf_count, perf_results.get()));
197 198 199 200 201 202 203 204 205 206 207
      algo = (perf_results.get())[best_algo_idx].algo;
      workspace_size = GetWorkspaceSize(args, algo);

      if (workspace_size > workspace_size_limit) {
        has_got_workspace_size = false;
        VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                   "the workspace size request("
                << workspace_size << ") exceeds the limit("
                << workspace_size_limit << ")";
      }
      if (!has_got_workspace_size) {
208 209 210 211 212 213
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnGetConvolutionForwardAlgorithm(
                args.handle, args.idesc.desc(), args.wdesc.desc(),
                args.cdesc.desc(), args.odesc.desc(),
                CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &algo));
214 215
      }
#else
216 217 218 219 220 221
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnGetConvolutionForwardAlgorithm(
              args.handle, args.idesc.desc(), args.wdesc.desc(),
              args.cdesc.desc(), args.odesc.desc(),
              CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &algo));
222
#endif
Q
qingqing01 已提交
223 224 225 226 227 228
      VLOG(3) << "choose algo " << algo;
    } else {
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();

229 230 231 232
      auto& temp = ctx.cuda_device_context();
      AlgorithmsCache<algo_t>& algo_cache =
          *(ConvSearchCache::Instance().GetForward());

Q
qingqing01 已提交
233 234 235
      auto x_dims = framework::vectorize(args.x->dims());
      auto w_dims = framework::vectorize(args.w->dims());

236 237 238
      VLOG(10) << "cudnnConvolutionFwdAlgoPerf_t:"
               << ", x_dims:" << x_dims << ", w_dims:" << w_dims << ", args.s"
               << args.s << ", args.p" << args.p << ", args.d" << args.d;
239

Q
qingqing01 已提交
240
      algo = algo_cache.GetAlgorithm(
241 242
          x_dims, w_dims, args.s, args.p, args.d, 0,
          static_cast<int64_t>(args.cudnn_dtype), [&]() {
Q
qingqing01 已提交
243 244 245 246
            int returned_algo_count;
            std::array<perf_t, kNUM_CUDNN_FWD_ALGS> perf_stat;

            auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
247
              PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
                  platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
                      args.handle, args.idesc.desc(), args.x->data<T>(),
                      args.wdesc.desc(), args.w->data<T>(), args.cdesc.desc(),
                      args.odesc.desc(), const_cast<T*>(args.o->data<T>()),
                      kNUM_CUDNN_FWD_ALGS, &returned_algo_count,
                      perf_stat.data(), cudnn_workspace_ptr,
                      workspace_size_limit));
            };
            workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);

            VLOG(3) << "FwdAlgo Perf result: (algo: stat, time, memory)";
            for (int i = 0; i < returned_algo_count; ++i) {
              const auto& stat = perf_stat[i];
              VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                      << " " << stat.memory;
            }
            return perf_stat[0].algo;
          });
    }
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

  static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
    size_t workspace_size = 0;
273 274 275 276
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
            args.handle, args.idesc.desc(), args.wdesc.desc(),
            args.cdesc.desc(), args.odesc.desc(), algo, &workspace_size));
Q
qingqing01 已提交
277 278 279 280 281 282 283 284 285 286 287
    return workspace_size;
  }
};

template <>
struct SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t> {
  using perf_t = cudnnConvolutionBwdDataAlgoPerf_t;
  using algo_t = cudnnConvolutionBwdDataAlgo_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
288
                     bool deterministic,
Q
qingqing01 已提交
289 290 291 292
                     const framework::ExecutionContext& ctx) {
    auto dtype = platform::CudnnDataType<T>::type;
    bool exhaustive = (exhaustive_search) & (dtype != CUDNN_DATA_HALF);
    size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
293 294
    size_t workspace_size = 0;
    bool has_got_workspace_size = true;
Q
qingqing01 已提交
295
    algo_t algo;
296 297 298 299

#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    if (dev_ctx.GetComputeCapability() >= 70 && dtype == CUDNN_DATA_HALF) {
300 301 302
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
                                                         CUDNN_TENSOR_OP_MATH));
303 304
      VLOG(5) << "use cudnn_tensor_op_math";
    } else {
305 306 307
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
                                                         CUDNN_DEFAULT_MATH));
308 309 310 311
      VLOG(5) << "NOT use cudnn_tensor_op_math";
    }
#endif

Q
qingqing01 已提交
312
    if (!exhaustive && !deterministic) {
313 314 315 316 317
#if CUDNN_VERSION >= 7001
      int perf_count;
      int best_algo_idx = 0;
      std::unique_ptr<perf_t[]> perf_results(
          new perf_t[kNUM_CUDNN_BWD_DATA_ALGS]);
318
      PADDLE_ENFORCE_CUDA_SUCCESS(
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
          platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm_v7(
              args.handle, args.wdesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.idesc.desc(), kNUM_CUDNN_BWD_DATA_ALGS,
              &perf_count, perf_results.get()));
      algo = (perf_results.get())[best_algo_idx].algo;

#if CUDNN_VERSION < 7500
      int stride_dim = args.x->dims().size() - 2;
      bool blacklist = std::any_of(args.s.begin(), args.s.begin() + stride_dim,
                                   [=](int n) { return n != 1; });
      if (blacklist && (static_cast<cudnnConvolutionBwdDataAlgo_t>(
                            perf_results[best_algo_idx].algo) ==
                            CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING ||
                        static_cast<cudnnConvolutionBwdDataAlgo_t>(
                            perf_results[best_algo_idx].algo) ==
                            CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT)) {
        algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
      }
#endif
      workspace_size = GetWorkspaceSize(args, algo);
      if (workspace_size > workspace_size_limit) {
        has_got_workspace_size = false;
        VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                   "the workspace size request("
                << workspace_size << ") exceeds the limit("
                << workspace_size_limit << ")";
      }
      if (!has_got_workspace_size) {
347
        PADDLE_ENFORCE_CUDA_SUCCESS(
348 349 350 351 352 353 354
            platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
                args.handle, args.wdesc.desc(), args.odesc.desc(),
                args.cdesc.desc(), args.idesc.desc(),
                CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &algo));
      }
#else
355 356 357 358 359 360
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
              args.handle, args.wdesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.idesc.desc(),
              CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &algo));
361
#endif
Q
qingqing01 已提交
362 363 364 365 366 367 368
    } else if (deterministic) {
      return CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
    } else {
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();

369 370 371
      AlgorithmsCache<algo_t>& algo_cache =
          *(ConvSearchCache::Instance().GetBackwardData());

Q
qingqing01 已提交
372 373 374
      auto x_dims = framework::vectorize(args.x->dims());
      auto w_dims = framework::vectorize(args.w->dims());

375 376 377
      VLOG(10) << "cudnnConvolutionFwdAlgoPerf_t"
               << ", x_dims:" << x_dims << ", w_dims:" << w_dims << ", args.s"
               << args.s << ", args.p" << args.p << ", args.d" << args.d;
378

Q
qingqing01 已提交
379
      algo = algo_cache.GetAlgorithm(
380 381
          x_dims, w_dims, args.s, args.p, args.d, 0,
          static_cast<int64_t>(args.cudnn_dtype), [&]() {
Q
qingqing01 已提交
382 383 384 385
            int returned_algo_count;
            std::array<perf_t, kNUM_CUDNN_FWD_ALGS> perf_stat;

            auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
386
              PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
                  platform::dynload::
                      cudnnFindConvolutionBackwardDataAlgorithmEx(
                          args.handle, args.wdesc.desc(), args.w->data<T>(),
                          args.odesc.desc(), args.o->data<T>(),
                          args.cdesc.desc(), args.idesc.desc(),
                          const_cast<T*>(args.x->data<T>()),
                          kNUM_CUDNN_BWD_DATA_ALGS, &returned_algo_count,
                          perf_stat.data(), cudnn_workspace_ptr,
                          workspace_size_limit));
            };
            workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);

            VLOG(3) << "BwdDataAlgo Perf result: (algo: stat, time, memory)";
            for (int i = 0; i < returned_algo_count; ++i) {
              const auto& stat = perf_stat[i];
              VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                      << " " << stat.memory;
            }

            return perf_stat[0].algo;
          });
    }
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

  static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
    size_t workspace_size = 0;
415
    PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
416
        platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
417 418
            args.handle, args.wdesc.desc(), args.odesc.desc(),
            args.cdesc.desc(), args.idesc.desc(), algo, &workspace_size));
Q
qingqing01 已提交
419 420 421 422 423 424 425 426 427 428 429
    return workspace_size;
  }
};

template <>
struct SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t> {
  using perf_t = cudnnConvolutionBwdFilterAlgoPerf_t;
  using algo_t = cudnnConvolutionBwdFilterAlgo_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
430
                     bool deterministic,
Q
qingqing01 已提交
431 432 433 434
                     const framework::ExecutionContext& ctx) {
    auto dtype = platform::CudnnDataType<T>::type;
    bool exhaustive = (exhaustive_search) & (dtype != CUDNN_DATA_HALF);
    size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
435 436 437 438 439 440
    size_t workspace_size = 0;
    bool has_got_workspace_size = true;

#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    if (dev_ctx.GetComputeCapability() >= 70 && dtype == CUDNN_DATA_HALF) {
441 442 443
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
                                                         CUDNN_TENSOR_OP_MATH));
444 445
      VLOG(5) << "use cudnn_tensor_op_math";
    } else {
446 447 448
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
                                                         CUDNN_DEFAULT_MATH));
449 450 451
      VLOG(5) << "NOT use cudnn_tensor_op_math";
    }
#endif
Q
qingqing01 已提交
452 453 454

    algo_t algo;
    if (!exhaustive && !deterministic) {
455 456 457 458 459 460
#if CUDNN_VERSION >= 7001
      using perf_t = cudnnConvolutionBwdFilterAlgoPerf_t;
      int perf_count;
      int best_algo_idx = 0;
      std::unique_ptr<perf_t[]> perf_results(
          new perf_t[kNUM_CUDNN_BWD_FILTER_ALGS]);
461
      PADDLE_ENFORCE_CUDA_SUCCESS(
462 463 464 465 466 467 468 469 470 471 472 473 474 475
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm_v7(
              args.handle, args.idesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.wdesc.desc(), kNUM_CUDNN_BWD_FILTER_ALGS,
              &perf_count, perf_results.get()));
      algo = (perf_results.get())[best_algo_idx].algo;
      workspace_size = GetWorkspaceSize(args, algo);
      if (workspace_size > workspace_size_limit) {
        has_got_workspace_size = false;
        VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                   "the workspace size request("
                << workspace_size << ") exceeds the limit("
                << workspace_size_limit << ")";
      }
      if (!has_got_workspace_size) {
476
        PADDLE_ENFORCE_CUDA_SUCCESS(
477 478 479 480 481 482 483
            platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
                args.handle, args.idesc.desc(), args.odesc.desc(),
                args.cdesc.desc(), args.wdesc.desc(),
                CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &algo));
      }
#else
484
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
485 486 487 488 489
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
              args.handle, args.idesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.wdesc.desc(),
              CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &algo));
490
#endif
Q
qingqing01 已提交
491 492 493 494 495 496
    } else if (deterministic) {
      return CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
    } else {
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();
497 498
      AlgorithmsCache<algo_t>& algo_cache =
          *(ConvSearchCache::Instance().GetBackwardFilter());
Q
qingqing01 已提交
499 500 501 502

      auto x_dims = framework::vectorize(args.x->dims());
      auto w_dims = framework::vectorize(args.w->dims());

503 504 505
      VLOG(10) << "cudnnConvolutionFwdAlgoPerf_t:"
               << ", x_dims:" << x_dims << ", w_dims:" << w_dims << ", args.s"
               << args.s << ", args.p" << args.p << ", args.d" << args.d;
506

Q
qingqing01 已提交
507
      algo = algo_cache.GetAlgorithm(
508 509
          x_dims, w_dims, args.s, args.p, args.d, 0,
          static_cast<int64_t>(args.cudnn_dtype), [&]() {
Q
qingqing01 已提交
510 511 512
            int returned_algo_count;
            std::array<perf_t, kNUM_CUDNN_FWD_ALGS> perf_stat;
            auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
513
              PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
                  platform::dynload::
                      cudnnFindConvolutionBackwardFilterAlgorithmEx(
                          args.handle, args.idesc.desc(), args.x->data<T>(),
                          args.odesc.desc(), args.o->data<T>(),
                          args.cdesc.desc(), args.wdesc.desc(),
                          const_cast<T*>(args.w->data<T>()),
                          kNUM_CUDNN_BWD_FILTER_ALGS, &returned_algo_count,
                          perf_stat.data(), cudnn_workspace_ptr,
                          workspace_size_limit));
            };
            workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);

            VLOG(3) << "BwdFilterAlgo Perf result: (algo: stat, time, memory)";
            for (int i = 0; i < returned_algo_count; ++i) {
              const auto& stat = perf_stat[i];
              VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                      << " " << stat.memory;
            }
            return perf_stat[0].algo;
          });
    }
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

  static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
    size_t workspace_size = 0;
541
    PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
542 543 544 545 546 547 548 549 550
        platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
            args.handle, args.idesc.desc(), args.odesc.desc(),
            args.cdesc.desc(), args.wdesc.desc(), algo, &workspace_size));
    return workspace_size;
  }
};

}  // namespace operators
}  // namespace paddle