fc_mkldnn_op.cc 17.0 KB
Newer Older
M
mozga-intel 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <memory>
W
wanghuancoder 已提交
16

17
#include "paddle/fluid/operators/fc_op.h"
M
mozga-intel 已提交
18
#include "paddle/fluid/platform/mkldnn_helper.h"
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
20

M
mozga-intel 已提交
21 22 23
namespace paddle {
namespace operators {

24 25 26 27 28
using dnnl::inner_product_forward;
using dnnl::memory;
using dnnl::primitive;
using dnnl::prop_kind;
using dnnl::stream;
29 30 31
using framework::DataLayout;
using framework::DDim;
using framework::ExecutionContext;
32
using framework::LoDTensor;
33
using platform::MKLDNNDeviceContext;
34
using platform::MKLDNNGetDataType;
35
using platform::to_void_cast;
M
mozga-intel 已提交
36

37 38 39 40 41
template <typename T>
constexpr bool IsInt8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}

M
Michał Gallus 已提交
42
template <typename T_in, typename T_w, typename T_out>
43 44 45
class FCMKLDNNHandler
    : public platform::MKLDNNHandlerNoCachingT<T_in,
                                               dnnl::inner_product_forward> {
M
mozga-intel 已提交
46
 public:
47 48
  FCMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
                  const platform::MKLDNNDeviceContext& dev_ctx,
49 50 51 52
                  const phi::DenseTensor* x,
                  const phi::DenseTensor* weights,
                  const phi::DenseTensor* bias,
                  phi::DenseTensor* out,
53 54 55 56 57 58 59 60 61 62 63 64 65 66
                  const int in_num_col_dims,
                  dnnl::engine mkldnn_engine,
                  platform::Place cpu_place)
      : platform::MKLDNNHandlerNoCachingT<T_in, dnnl::inner_product_forward>(
            mkldnn_engine, cpu_place),
        dev_ctx_(dev_ctx) {
    this->memory_key_ = ctx.InputName("W");

    auto x_vec_dims = phi::vectorize(x->dims());
    auto weights_vec_dims = phi::vectorize(weights->dims());

    int MB = 1;
    for (int i = 0; i < in_num_col_dims; ++i) {
      MB *= x_vec_dims[i];
67 68
    }

69 70 71
    int IC = 1;
    for (size_t i = in_num_col_dims; i < x_vec_dims.size(); ++i) {
      IC *= x_vec_dims[i];
72
    }
73

74
    int OC = weights_vec_dims[1];
M
mozga-intel 已提交
75

76
    dnnl::memory::desc bias_md;
77

78 79 80 81 82 83 84 85 86 87 88
    auto src_md = dnnl::memory::desc(
        {MB, IC}, MKLDNNGetDataType<T_in>(), dnnl::memory::format_tag::any);
    auto weights_md = dnnl::memory::desc(
        {OC, IC}, MKLDNNGetDataType<T_w>(), dnnl::memory::format_tag::any);
    auto dst_md = dnnl::memory::desc(
        {MB, OC}, MKLDNNGetDataType<T_out>(), dnnl::memory::format_tag::any);
    if (bias) {
      bias_md = dnnl::memory::desc({bias->numel()},
                                   MKLDNNGetDataType<float>(),
                                   dnnl::memory::format_tag::a);
    }
89

90 91
    dnnl::primitive_attr attrs;
    HandlePostOps(ctx, &attrs);
A
Adam 已提交
92

93 94 95 96 97 98
    this->AcquireForwardPrimitiveDescriptor(attrs,
                                            prop_kind::forward_inference,
                                            src_md,
                                            weights_md,
                                            bias_md,
                                            dst_md);
M
mozga-intel 已提交
99 100
  }

101
 private:
102 103 104 105 106 107 108 109 110 111 112
  void HandlePostOps(const paddle::framework::ExecutionContext& ctx,
                     dnnl::primitive_attr* attrs) {
    static std::unordered_map<std::string, dnnl::algorithm> algo_map = {
        {"relu", dnnl::algorithm::eltwise_relu},
        {"gelu", dnnl::algorithm::eltwise_gelu},
        {"gelu_tanh", dnnl::algorithm::eltwise_gelu_tanh},
        {"gelu_erf", dnnl::algorithm::eltwise_gelu_erf},
        {"tanh", dnnl::algorithm::eltwise_tanh},
        {"sigmoid", dnnl::algorithm::eltwise_logistic},
        {"hard_swish", dnnl::algorithm::eltwise_hardswish},
        {"mish", dnnl::algorithm::eltwise_mish}};
113

114 115 116 117 118 119
    std::vector<float> output_shift_scale;
    float scale = 1.0f;
    if (IsInt8<T_w>()) {
      std::tie(output_shift_scale, scale) = ComputeOutputShiftScale(ctx);
      int mask = CreateMask(1, output_shift_scale.size() > 1);
      attrs->set_output_scales(mask, output_shift_scale);
120
    }
121

122
    dnnl::post_ops post_ops;
123

124 125 126 127
    constexpr float sum_scale = 1.0f;
    if (ctx.HasAttr("fuse_residual_connection") &&
        ctx.Attr<bool>("fuse_residual_connection")) {
      post_ops.append_sum(sum_scale);
128
    }
M
mozga-intel 已提交
129

130
    std::string activation_type = ctx.Attr<std::string>("activation_type");
M
mozga-intel 已提交
131

132 133 134
    if (activation_type.empty() == false) {
      constexpr float alpha = 0.0f;
      constexpr float beta = 0.0f;
M
Michał Gallus 已提交
135

136
      post_ops.append_eltwise(scale, algo_map[activation_type], alpha, beta);
137
    }
138

139
    attrs->set_post_ops(post_ops);
140 141
  }

M
Michał Gallus 已提交
142 143
  // Compute the bias scales so that its values correspond to the
  // scale of data being an output of weights and input multiplication
144 145 146
  std::vector<float> ComputeBiasScales(
      const float scale_in, const std::vector<float>& scale_weights) {
    std::vector<float> bias_scales(scale_weights.size());
M
Michał Gallus 已提交
147

148 149
    for (size_t i = 0; i < bias_scales.size(); ++i) {
      if (scale_weights[i] == 0.0)
M
Michał Gallus 已提交
150 151
        bias_scales[i] = 1.0f;
      else
152
        bias_scales[i] = scale_in * scale_weights[i];
M
Michał Gallus 已提交
153 154 155 156 157 158 159 160 161 162
    }

    return bias_scales;
  }

  // Correct output scale, to take into account scaling of input and weights
  // Since the data that comes out of input and weight multiplication is
  // scaled with its own scales, this data needs to be divided by
  // those scales to normalise them back to what their floating-point range
  // was. Then we multiply them by desired output scale we want on the output.
163 164
  std::tuple<std::vector<float>, float> ComputeOutputShiftScale(
      const ExecutionContext& ctx) {
M
Michał Gallus 已提交
165 166
    auto scale_in_data = ctx.Attr<float>("Scale_in");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
167 168
    bool has_activation = !ctx.Attr<std::string>("activation_type").empty();
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
169

M
Michał Gallus 已提交
170
    // If the output will be in floats, we don't multiply by scale_out.
171

172 173 174 175 176 177
    float scale = (!force_fp32_output && has_activation)
                      ? ctx.Attr<float>("Scale_out")
                      : 1.0f;
    float inner_scale = (force_fp32_output || has_activation)
                            ? 1.0f
                            : ctx.Attr<float>("Scale_out");
M
Michał Gallus 已提交
178 179 180 181 182
    const size_t weight_scales_num = scale_weights_data.size();
    std::vector<float> output_shift_scale(weight_scales_num);

    for (size_t i = 0; i < weight_scales_num; i++) {
      if (scale_weights_data[i] == 0.0)
183
        output_shift_scale[i] = inner_scale;
M
Michał Gallus 已提交
184 185
      else
        output_shift_scale[i] =
186
            inner_scale / (scale_in_data * scale_weights_data[i]);
M
Michał Gallus 已提交
187 188
    }

189
    return make_tuple(output_shift_scale, scale);
M
Michał Gallus 已提交
190 191 192 193 194 195 196 197 198 199
  }

  // Computing MKL-DNN's scaling mask which determines along which dimension
  // slice should the scaling be applied. For more data plase refer to:
  // https://intel.github.io/mkl-dnn/group__c__api__attributes.html
  // Section dnnl_status_t DNNL_API dnnl_primitive_attr_set_output_scales
  int CreateMask(int slice_dimension, bool is_multi_channel_quantizied) {
    return is_multi_channel_quantizied ? 1 << slice_dimension : 0;
  }

200 201 202 203 204 205
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorderAndAttrs(
      const dnnl::memory::desc& user_md,
      const dnnl::memory::desc& target_md,
      void* ptr,
      const dnnl::primitive_attr& attrs) {
    std::shared_ptr<dnnl::memory> target_memory_p;
M
Michał Gallus 已提交
206

207 208 209 210 211
    auto user_memory_p =
        std::make_shared<dnnl::memory>(user_md, this->engine_, ptr);
    target_memory_p = std::make_shared<dnnl::memory>(target_md, this->engine_);
    auto reorder_p = std::make_shared<dnnl::reorder>(
        *user_memory_p, *target_memory_p, attrs);
M
Michał Gallus 已提交
212

213 214 215 216 217
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    reorder_p->execute(
        astream,
        {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}});
    astream.wait();
M
Michał Gallus 已提交
218

219 220
    return target_memory_p;
  }
221

222 223
  std::string memory_key_;
  const platform::MKLDNNDeviceContext& dev_ctx_;
M
Michał Gallus 已提交
224

225
 public:
226 227
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorder(
      const phi::DenseTensor* x) {
228 229 230 231 232 233 234
    const T_in* x_data = x->data<T_in>();

    auto user_md = x->mem_desc();
    if (x->dims().size() != 2) {
      // reshape restrictions are always satisfied because in case of 3 or 4 dim
      // input, plain layout is enforced
      user_md = user_md.reshape(this->fwd_pd_->src_desc().dims());
M
Michał Gallus 已提交
235 236
    }

237 238
    return this->AcquireMemoryWithReorder(
        user_md, this->fwd_pd_->src_desc(), to_void_cast<T_in>(x_data));
239
  }
M
mozga-intel 已提交
240

241
  std::shared_ptr<dnnl::memory> AcquireBiasMemoryWithReorder(
242
      const phi::DenseTensor* bias,
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
      const float scale_in,
      const std::vector<float>& scale_weights) {
    const float* bias_data = bias->data<float>();

    if (IsInt8<T_w>() == false) {
      // for BF16/FP32 bias is 1D and has no scales, so reorder is not needed
      return this->AcquireMemoryFromPrimitive(this->fwd_pd_->bias_desc(),
                                              to_void_cast<float>(bias_data));
    } else {
      const std::string bias_key = this->memory_key_ + "@bias";
      auto memory_p = std::static_pointer_cast<dnnl::memory>(
          this->dev_ctx_.GetBlob(bias_key));

      if (!memory_p) {
        const auto& scale_data = ComputeBiasScales(scale_in, scale_weights);
        dnnl::primitive_attr attrs;

        int mask = CreateMask(0, scale_data.size() > 1);
        attrs.set_output_scales(mask, scale_data);

        auto user_md = dnnl::memory::desc({bias->dims()[0]},
                                          MKLDNNGetDataType<float>(),
                                          dnnl::memory::format_tag::a);

        memory_p = this->AcquireMemoryWithReorderAndAttrs(
            user_md,
            this->fwd_pd_->bias_desc(),
            to_void_cast<float>(bias_data),
            attrs);
      }
      return memory_p;
    }
  }

  std::shared_ptr<dnnl::memory> AcquireWeightsMemoryWithReorder(
278
      const phi::DenseTensor* weights, const std::vector<float>& scale_data) {
279 280 281
    const std::string weights_key = this->memory_key_ + "@weights";
    auto memory_p = std::static_pointer_cast<dnnl::memory>(
        this->dev_ctx_.GetBlob(weights_key));
M
mozga-intel 已提交
282

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
    if (!memory_p) {
      const float* weights_data = weights->data<float>();
      auto weights_dims = this->fwd_pd_->weights_desc().dims();

      auto user_md = dnnl::memory::desc(weights_dims,
                                        MKLDNNGetDataType<float>(),
                                        dnnl::memory::format_tag::io);

      if (IsInt8<T_w>()) {
        dnnl::primitive_attr attrs;
        int mask = CreateMask(0, scale_data.size() > 1);
        attrs.set_output_scales(mask, scale_data);

        memory_p = this->AcquireMemoryWithReorderAndAttrs(
            user_md,
            this->fwd_pd_->weights_desc(),
            to_void_cast<float>(weights_data),
            attrs);
      } else {
        memory_p =
            this->AcquireMemoryWithReorder(user_md,
                                           this->fwd_pd_->weights_desc(),
                                           to_void_cast<float>(weights_data));
      }

      this->dev_ctx_.SetBlob(weights_key, memory_p);
    }
    return memory_p;
311
  }
M
mozga-intel 已提交
312

313
  std::shared_ptr<dnnl::memory> AcquireCustomDstMemory(
314
      const ExecutionContext& ctx, phi::DenseTensor* out) {
315 316
    if (ctx.HasAttr("fuse_residual_connection") &&
        ctx.Attr<bool>("fuse_residual_connection")) {
317
      auto* residual_param = ctx.Output<phi::DenseTensor>("ResidualData");
318 319

      PADDLE_ENFORCE_EQ(
320
          out->dims(),
321
          residual_param->dims(),
322 323 324 325
          platform::errors::InvalidArgument(
              "Output and elementwise parameter need to have the "
              "same dimension sizes, but got output's dimension = %d"
              " and residual param's dimension =%d .",
326
              out->dims().size(),
327
              residual_param->dims().size()));
328

329
      out->ShareDataWith(*residual_param);
330
    }
331
    return this->template AcquireDstMemory<T_out>(out);
332 333
  }  // namespace operators
};   // namespace paddle
334

335 336 337 338 339 340
template <typename T_in, typename T_w>
class FCMKLDNNKernel : public framework::OpKernel<T_in> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    bool fuse_relu = ctx.Attr<std::string>("activation_type") == "relu";
341

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
    if (force_fp32_output) {
      this->RunKernel<float>(ctx);
    } else if (IsInt8<T_in>()) {
      if (fuse_relu) {
        this->RunKernel<uint8_t>(ctx);
      } else {
        this->RunKernel<int8_t>(ctx);
      }
    } else {
      this->RunKernel<T_in>(ctx);
    }
  }

  template <typename T_out = T_w>
  void RunKernel(const framework::ExecutionContext& ctx) const {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const auto* x = ctx.Input<LoDTensor>("Input");
362 363
    const auto* weights = ctx.Input<phi::DenseTensor>("W");
    const auto* bias = ctx.Input<phi::DenseTensor>("Bias");
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
    auto out = ctx.Output<LoDTensor>("Out");

    auto in_col_dims = ctx.Attr<int>("in_num_col_dims");

    const float scale_in = ctx.Attr<float>("Scale_in");
    const auto& scale_weights = ctx.Attr<std::vector<float>>("Scale_weights");

    RecomputeOutputDims(ctx, x, weights, out);

    FCMKLDNNHandler<T_in, T_w, T_out> handler(ctx,
                                              dev_ctx,
                                              x,
                                              weights,
                                              bias,
                                              out,
                                              in_col_dims,
                                              mkldnn_engine,
                                              ctx.GetPlace());

    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(x);
    auto weights_memory_p =
        handler.AcquireWeightsMemoryWithReorder(weights, scale_weights);
    auto dst_memory_p = handler.AcquireCustomDstMemory(ctx, out);

    auto fc_p = handler.AcquireForwardPrimitive();
    auto& astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();

    std::unordered_map<int, dnnl::memory> fc_args = {
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};

    if (bias) {
      auto bias_memory_p =
          handler.AcquireBiasMemoryWithReorder(bias, scale_in, scale_weights);
      fc_args.insert({DNNL_ARG_BIAS, *bias_memory_p});
    }

    fc_p->execute(astream, fc_args);
    astream.wait();

    out->set_mem_desc(
        dst_memory_p->get_desc().reshape(phi::vectorize(out->dims())));
407
  }
M
mozga-intel 已提交
408

409
  void RecomputeOutputDims(const ExecutionContext& ctx,
410
                           const LoDTensor* x,
411
                           const phi::DenseTensor* weights,
412
                           LoDTensor* out) const {
L
luotao1 已提交
413
    int in_num_col_dims = ctx.Attr<int>("in_num_col_dims");
414
    bool padding_weights = ctx.Attr<bool>("padding_weights");
415 416
    PADDLE_ENFORCE_EQ(padding_weights,
                      false,
417 418
                      platform::errors::PermissionDenied(
                          "Weight padding in fc can not be used in MKLDNN."));
L
luotao1 已提交
419
    std::vector<int64_t> output_dims;
420 421
    FCOutputSize(x->dims(),
                 weights->dims(),
422 423
                 output_dims,
                 in_num_col_dims,
424
                 padding_weights);
425 426
    out->Resize(phi::make_ddim(output_dims));
    out->set_lod(x->lod());
427 428
  }
};
M
mozga-intel 已提交
429 430 431 432

}  // namespace operators
}  // namespace paddle

M
Michał Gallus 已提交
433 434 435 436
// Weights of FC are by default stored using fp32, template argument of weight
// data type implies their destination data type. (What's eventually going to
// be used during computations of kernel).
namespace ops = paddle::operators;
437 438 439 440 441
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    FP32,
                                    ops::kFCMKLDNNFP32,
442
                                    ops::FCMKLDNNKernel<float, float>);
M
Michał Gallus 已提交
443

444
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
445 446 447 448 449
    fc,
    MKLDNN,
    ::paddle::platform::CPUPlace,
    BF16,
    ops::kFCMKLDNNFP32,
450 451
    ops::FCMKLDNNKernel<paddle::platform::bfloat16,
                        paddle::platform::bfloat16>);
452

453 454 455 456 457
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    U8,
                                    ops::kFCMKLDNNINT8,
458
                                    ops::FCMKLDNNKernel<uint8_t, int8_t>);
M
Michał Gallus 已提交
459

460 461 462 463 464
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc,
                                    MKLDNN,
                                    ::paddle::platform::CPUPlace,
                                    S8,
                                    ops::kFCMKLDNNINT8,
465
                                    ops::FCMKLDNNKernel<int8_t, int8_t>);