scale_api.h 9.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "glog/logging.h"

#include "paddle/pten/api/include/tensor.h"
#include "paddle/pten/api/lib/api_registry.h"
#include "paddle/pten/api/lib/kernel_dispatch.h"
#include "paddle/pten/api/lib/utils/allocator.h"
#include "paddle/pten/common/scalar.h"
#include "paddle/pten/common/scalar_array.h"
#include "paddle/pten/core/kernel_registry.h"
26
#include "paddle/pten/core/meta_tensor.h"
27
#include "paddle/pten/infermeta/unary.h"
28
#include "paddle/pten/kernels/scale_kernel.h"
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

namespace paddle {
namespace experimental {

PADDLE_API Tensor scale_kernel_context(const Tensor& x,
                                       const Scalar& scale,
                                       float bias,
                                       bool bias_after_scale) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(x);
    auto kernel_key = kernel_key_set.GetHigestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }
  auto kernel = pten::KernelFactory::Instance().SelectKernelOrThrowError(
      "scale", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "scale API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "scale API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);
  auto kernel_context = pten::KernelContext(dev_ctx);

  auto dense_x = std::dynamic_pointer_cast<pten::DenseTensor>(x.impl());
66
  kernel_context.EmplaceBackInput(dense_x.get());
67 68 69 70 71

  kernel_context.EmplaceBackAttr(pten::Scalar(scale));
  kernel_context.EmplaceBackAttr(bias);
  kernel_context.EmplaceBackAttr(bias_after_scale);

72 73
  auto dense_out = std::make_shared<pten::DenseTensor>(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
74
          pten::TransToPtenPlace(kernel_backend)),
75 76 77
      pten::DenseTensorMeta());
  pten::MetaTensor meta_out(dense_out.get());
  pten::UnchangedInferMeta(*dense_x, &meta_out);
78
  kernel_context.EmplaceBackOutput(dense_out.get());
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

  Tensor out;
  out.set_impl(dense_out);

  kernel(&kernel_context);
  return out;
}

static void ScaleCPU(DataType kernel_dtype,
                     const pten::CPUContext& dev_ctx,
                     const pten::DenseTensor& x,
                     const Scalar& scale,
                     float bias,
                     bool bias_after_scale,
                     pten::DenseTensor* dense_out) {
  switch (kernel_dtype) {
    case pten::DataType::FLOAT64: {
96
      pten::ScaleKernel<double>(
97 98 99 100
          dev_ctx, x, pten::Scalar(scale), bias, bias_after_scale, dense_out);
      break;
    }
    case pten::DataType::FLOAT32: {
101
      pten::ScaleKernel<float>(
102 103 104 105
          dev_ctx, x, pten::Scalar(scale), bias, bias_after_scale, dense_out);
      break;
    }
    case pten::DataType::BFLOAT16: {
106
      pten::ScaleKernel<pten::dtype::bfloat16>(
107 108 109 110
          dev_ctx, x, pten::Scalar(scale), bias, bias_after_scale, dense_out);
      break;
    }
    case pten::DataType::INT64: {
111
      pten::ScaleKernel<int64_t>(
112 113 114 115
          dev_ctx, x, pten::Scalar(scale), bias, bias_after_scale, dense_out);
      break;
    }
    case pten::DataType::INT32: {
116
      pten::ScaleKernel<int32_t>(
117 118 119 120
          dev_ctx, x, pten::Scalar(scale), bias, bias_after_scale, dense_out);
      break;
    }
    case pten::DataType::INT16: {
121
      pten::ScaleKernel<int16_t>(
122 123 124 125
          dev_ctx, x, pten::Scalar(scale), bias, bias_after_scale, dense_out);
      break;
    }
    case pten::DataType::INT8: {
126
      pten::ScaleKernel<int8_t>(
127 128 129 130
          dev_ctx, x, pten::Scalar(scale), bias, bias_after_scale, dense_out);
      break;
    }
    case pten::DataType::UINT8: {
131
      pten::ScaleKernel<uint8_t>(
132 133 134 135 136 137 138 139 140 141 142 143 144 145
          dev_ctx, x, pten::Scalar(scale), bias, bias_after_scale, dense_out);
      break;
    }
    default: {
      PADDLE_THROW(paddle::platform::errors::Fatal(
          "Detected unsupported data type."
          "Only Float64, Float32, BFloat16, Int64, Int32, Int16, Int8, UInt8 "
          "are supported for now."));
      break;
    }
  }
}

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
146 147 148 149 150 151 152
static void ScaleGPU(DataType kernel_dtype,
                     const pten::GPUContext& dev_ctx,
                     const pten::DenseTensor& x,
                     const Scalar& scale,
                     float bias,
                     bool bias_after_scale,
                     pten::DenseTensor* dense_out) {
153 154
  switch (kernel_dtype) {
    case pten::DataType::FLOAT64: {
155
      pten::ScaleKernel<double>(
156 157 158 159
          dev_ctx, x, pten::Scalar(scale), bias, bias_after_scale, dense_out);
      break;
    }
    case pten::DataType::FLOAT32: {
160
      pten::ScaleKernel<float>(
161 162 163 164
          dev_ctx, x, pten::Scalar(scale), bias, bias_after_scale, dense_out);
      break;
    }
    case pten::DataType::FLOAT16: {
165
      pten::ScaleKernel<paddle::platform::float16>(
166 167 168 169
          dev_ctx, x, pten::Scalar(scale), bias, bias_after_scale, dense_out);
      break;
    }
    case pten::DataType::INT64: {
170
      pten::ScaleKernel<int64_t>(
171 172 173 174
          dev_ctx, x, pten::Scalar(scale), bias, bias_after_scale, dense_out);
      break;
    }
    case pten::DataType::INT32: {
175
      pten::ScaleKernel<int32_t>(
176 177 178 179
          dev_ctx, x, pten::Scalar(scale), bias, bias_after_scale, dense_out);
      break;
    }
    case pten::DataType::INT16: {
180
      pten::ScaleKernel<int16_t>(
181 182 183 184
          dev_ctx, x, pten::Scalar(scale), bias, bias_after_scale, dense_out);
      break;
    }
    case pten::DataType::INT8: {
185
      pten::ScaleKernel<int8_t>(
186 187 188 189
          dev_ctx, x, pten::Scalar(scale), bias, bias_after_scale, dense_out);
      break;
    }
    case pten::DataType::UINT8: {
190
      pten::ScaleKernel<uint8_t>(
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
          dev_ctx, x, pten::Scalar(scale), bias, bias_after_scale, dense_out);
      break;
    }
    default: {
      PADDLE_THROW(paddle::platform::errors::Fatal(
          "Detected unsupported data type."
          "Only Float64, Float32, Float16, Int64, Int32, Int16, Int8, UInt8 "
          "are "
          "supported for now."));
      break;
    }
  }
}
#endif

Tensor scale_switch_case(const Tensor& x,
                         const Scalar& scale,
                         float bias,
                         bool bias_after_scale) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(x);
    auto kernel_key = kernel_key_set.GetHigestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }
  auto kernel = pten::KernelFactory::Instance().SelectKernelOrThrowError(
      "scale", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "scale API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "scale API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto dense_x = std::dynamic_pointer_cast<pten::DenseTensor>(x.impl());

239 240
  auto dense_out = std::make_shared<pten::DenseTensor>(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
241
          pten::TransToPtenPlace(kernel_backend)),
242 243 244
      pten::DenseTensorMeta());
  pten::MetaTensor meta_out(dense_out.get());
  pten::UnchangedInferMeta(*dense_x, &meta_out);
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

  Tensor out;
  out.set_impl(dense_out);

  switch (kernel_backend) {
    case Backend::CPU:
      ScaleCPU(kernel_data_type,
               static_cast<const pten::CPUContext&>(*dev_ctx),
               *dense_x,
               scale,
               bias,
               bias_after_scale,
               dense_out.get());
      break;
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
260 261 262 263 264 265 266 267
    case Backend::GPU:
      ScaleGPU(kernel_data_type,
               static_cast<const pten::GPUContext&>(*dev_ctx),
               *dense_x,
               scale,
               bias,
               bias_after_scale,
               dense_out.get());
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
      break;
#endif
    default:
      PADDLE_THROW(paddle::platform::errors::Fatal(
          "Detected unsupported backend."
          "Only CPU and CUDA Backend are supported for now."
          "Please double check if your backend falls into the above two "
          "categories."));
  }

  return out;
}

}  // namespace experimental
}  // namespace paddle