data_transform.cc 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/pten/api/lib/data_transform.h"

#include "paddle/pten/api/ext/dispatch.h"
#include "paddle/pten/api/lib/kernel_dispatch.h"
#include "paddle/pten/backends/all_context.h"
#include "paddle/pten/kernels/cast_kernel.h"
#include "paddle/pten/kernels/transfer_layout_kernel.h"

#include "paddle/fluid/framework/data_device_transform.h"

namespace paddle {
namespace experimental {

inline bool NeedTransformDataType(const DataType& input,
                                  const DataType& target,
                                  const TransformFlag& transform_flag) {
  return input != target &&
         (transform_flag.need_trans_data_type() ||
          target == DataType::COMPLEX64 || target == DataType::COMPLEX128);
}

inline bool NeedTransformPlace(const paddle::platform::Place& input,
                               const Backend& target,
                               const TransformFlag& transform_flag) {
  bool ret = transform_flag.need_trans_backend() &&
             target != Backend::ALL_BACKEND &&
41
             !platform::is_same_place(input, pten::TransToPtenPlace(target));
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
  return ret;
}

inline bool NeedTransformLayout(const DataLayout& input,
                                const DataLayout& target,
                                const TransformFlag& transform_flag) {
  bool ret = transform_flag.need_trans_layout() &&
             (input != DataLayout::ALL_LAYOUT &&
              target != DataLayout::ALL_LAYOUT && input != target);
  return ret;
}

inline pten::DenseTensor TransDataLayout(const pten::DenseTensor& tensor,
                                         DataLayout layout) {
  auto& pool = paddle::platform::DeviceContextPool::Instance();
  VLOG(3) << "DataLayoutTransform src_layout: " << tensor.layout()
          << " dst_layout: " << layout;
  if (platform::is_cpu_place(tensor.place())) {
    auto* dev_ctx = static_cast<pten::CPUContext*>(pool.Get(tensor.place()));
    return pten::TransferLayout(*dev_ctx, tensor, layout);
  } else {
    PADDLE_THROW(pten::errors::PreconditionNotMet(
        "Unsupported data layout cast from CPU to GPU."));
  }
}

template <typename Context>
pten::DenseTensor CastDateType(const Context& dev_ctx,
                               const pten::DenseTensor& tensor,
                               DataType dtype) {
  switch (tensor.dtype()) {
    case DataType::FLOAT32:
      return pten::Cast<float>(dev_ctx, tensor, dtype);
    case DataType::FLOAT64:
      return pten::Cast<double>(dev_ctx, tensor, dtype);
    case DataType::INT32:
      return pten::Cast<int32_t>(dev_ctx, tensor, dtype);
    case DataType::INT64:
      return pten::Cast<int64_t>(dev_ctx, tensor, dtype);
    case DataType::FLOAT16:
      return pten::Cast<pten::dtype::float16>(dev_ctx, tensor, dtype);
    case DataType::BFLOAT16:
      return pten::Cast<pten::dtype::bfloat16>(dev_ctx, tensor, dtype);
    case DataType::BOOL:
      return pten::Cast<bool>(dev_ctx, tensor, dtype);
    case DataType::INT16:
      return pten::Cast<int16_t>(dev_ctx, tensor, dtype);
    case DataType::UINT8:
      return pten::Cast<uint8_t>(dev_ctx, tensor, dtype);
    default:
      PADDLE_THROW(pten::errors::Unimplemented(
          "Data type (%s) is not supported when casting data type.",
          tensor.dtype()));
  }
}

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
pten::DenseTensor CastDateType(const pten::GPUContext& dev_ctx,
                               const pten::DenseTensor& tensor,
                               DataType dtype) {
  switch (tensor.dtype()) {
    case DataType::FLOAT32:
      return pten::Cast<float>(dev_ctx, tensor, dtype);
    case DataType::FLOAT64:
      return pten::Cast<double>(dev_ctx, tensor, dtype);
    case DataType::INT32:
      return pten::Cast<int32_t>(dev_ctx, tensor, dtype);
    case DataType::INT64:
      return pten::Cast<int64_t>(dev_ctx, tensor, dtype);
    case DataType::FLOAT16:
      return pten::Cast<pten::dtype::float16>(dev_ctx, tensor, dtype);
    case DataType::BOOL:
      return pten::Cast<bool>(dev_ctx, tensor, dtype);
    case DataType::INT16:
      return pten::Cast<int16_t>(dev_ctx, tensor, dtype);
    case DataType::UINT8:
      return pten::Cast<uint8_t>(dev_ctx, tensor, dtype);
    default:
      PADDLE_THROW(pten::errors::Unimplemented(
          "Data type (%s) is not supported when casting data type.",
          tensor.dtype()));
  }
}
#endif

inline pten::DenseTensor TransDataType(const pten::DenseTensor& tensor,
                                       DataType dtype) {
  auto& pool = paddle::platform::DeviceContextPool::Instance();

  VLOG(3) << "DataTypeTransform src_dtype: " << tensor.dtype()
          << " dst_dtype: " << dtype;

  pten::DenseTensor out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(tensor.place()),
      {dtype, tensor.dims(), tensor.layout()});

  if (platform::is_cpu_place(tensor.place())) {
    auto* dev_ctx = static_cast<pten::CPUContext*>(pool.Get(tensor.place()));
    return CastDateType(*dev_ctx, tensor, dtype);
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  } else if (platform::is_gpu_place(tensor.place())) {
    auto* dev_ctx = static_cast<pten::GPUContext*>(pool.Get(tensor.place()));
    return CastDateType(*dev_ctx, tensor, dtype);
#endif
  } else {
    PADDLE_THROW(pten::errors::Unimplemented(
        "Place type is not supported when casting data type."));
  }
  return out;
}

pten::DenseTensor TransformData(const pten::DenseTensor& tensor,
                                const pten::TensorArgDef& target_args_def,
                                const TransformFlag& transform_flag) {
  pten::DenseTensor out = tensor;
  if (NeedTransformLayout(
          tensor.layout(), target_args_def.layout, transform_flag)) {
    out = TransDataLayout(out, target_args_def.layout);
  }

  if (NeedTransformDataType(
          tensor.dtype(), target_args_def.dtype, transform_flag)) {
    out = TransDataType(out, target_args_def.dtype);
  }

  if (NeedTransformPlace(
          out.place(), target_args_def.backend, transform_flag)) {
    pten::DenseTensor result(
        pten::make_intrusive<paddle::experimental::SharedStorage>(
171
            pten::TransToPtenPlace(target_args_def.backend)),
172 173
        {out.dtype(), out.dims(), out.layout()});
    framework::TransDataDevice(
174
        out, pten::TransToPtenPlace(target_args_def.backend), &result);
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    out = result;
  }
  return out;
}

std::shared_ptr<pten::DenseTensor> PrepareData(
    const Tensor& input,
    const pten::TensorArgDef& target_args_def,
    const TransformFlag& transform_flag) {
  const auto& tensor_in = input.impl();
  if (!transform_flag.NeedTransform() || !tensor_in->initialized() ||
      (!NeedTransformPlace(
           tensor_in->place(), target_args_def.backend, transform_flag) &&
       !NeedTransformDataType(
           tensor_in->dtype(), target_args_def.dtype, transform_flag) &&
       !NeedTransformLayout(
           tensor_in->layout(), target_args_def.layout, transform_flag))) {
    return std::dynamic_pointer_cast<pten::DenseTensor>(tensor_in);
  }

  pten::DenseTensor out =
      TransformData(*(static_cast<pten::DenseTensor*>(tensor_in.get())),
                    target_args_def,
                    transform_flag);
  return std::make_shared<pten::DenseTensor>(out);
}

std::unique_ptr<std::vector<pten::DenseTensor>> PrepareData(
    const std::vector<Tensor>& inputs,
    const pten::TensorArgDef& target_args_def,
    const TransformFlag& transform_flag) {
  auto pt_tensors = std::make_unique<std::vector<pten::DenseTensor>>();
  pt_tensors->reserve(inputs.size());

  for (const auto& input : inputs) {
    const auto& tensor_in = input.impl();
    if (!transform_flag.NeedTransform() || !tensor_in->initialized() ||
        (!NeedTransformPlace(
             tensor_in->place(), target_args_def.backend, transform_flag) &&
         !NeedTransformDataType(
             tensor_in->dtype(), target_args_def.dtype, transform_flag) &&
         !NeedTransformLayout(
             tensor_in->layout(), target_args_def.layout, transform_flag))) {
      pt_tensors->emplace_back(
          *std::dynamic_pointer_cast<pten::DenseTensor>(tensor_in));
    } else {
      pt_tensors->emplace_back(
          TransformData(*(static_cast<pten::DenseTensor*>(tensor_in.get())),
                        target_args_def,
                        transform_flag));
    }
  }

  return std::move(pt_tensors);
}

}  // namespace experimental
}  // namespace paddle