wmt14.py 4.6 KB
Newer Older
H
Helin Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
wmt14 dataset
"""
import paddle.v2.dataset.common
import tarfile
import os.path
import itertools

__all__ = ['train', 'test', 'build_dict']

URL_DEV_TEST = 'http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/data/dev+test.tgz'
MD5_DEV_TEST = '7d7897317ddd8ba0ae5c5fa7248d3ff5'
URL_TRAIN = 'http://localhost:8000/train.tgz'
MD5_TRAIN = '72de99da2830ea5a3a2c4eb36092bbc7'


def word_count(f, word_freq=None):
    add = paddle.v2.dataset.common.dict_add
    if word_freq == None:
        word_freq = {}

    for l in f:
        for w in l.strip().split():
            add(word_freq, w)
        add(word_freq, '<s>')
        add(word_freq, '<e>')

    return word_freq


def get_word_dix(word_freq):
    TYPO_FREQ = 50
    word_freq = filter(lambda x: x[1] > TYPO_FREQ, word_freq.items())
    word_freq_sorted = sorted(word_freq, key=lambda x: (-x[1], x[0]))
    words, _ = list(zip(*word_freq_sorted))
    word_idx = dict(zip(words, xrange(len(words))))
    word_idx['<unk>'] = len(words)
    return word_idx


def get_word_freq(train, dev):
    word_freq = word_count(train, word_count(dev))
    if '<unk>' in word_freq:
        # remove <unk> for now, since we will set it as last index
        del word_freq['<unk>']
    return word_freq


def build_dict():
    base_dir = './wmt14-data'
    train_en_filename = base_dir + '/train/train.en'
    train_fr_filename = base_dir + '/train/train.fr'
    dev_en_filename = base_dir + '/dev/ntst1213.en'
    dev_fr_filename = base_dir + '/dev/ntst1213.fr'

    if not os.path.exists(train_en_filename) or not os.path.exists(
            train_fr_filename):
        with tarfile.open(
                paddle.v2.dataset.common.download(URL_TRAIN, 'wmt14',
                                                  MD5_TRAIN)) as tf:
            tf.extractall(base_dir)

    if not os.path.exists(dev_en_filename) or not os.path.exists(
            dev_fr_filename):
        with tarfile.open(
                paddle.v2.dataset.common.download(URL_DEV_TEST, 'wmt14',
                                                  MD5_DEV_TEST)) as tf:
            tf.extractall(base_dir)

    f_en = open(train_en_filename)
    f_fr = open(train_fr_filename)
    f_en_dev = open(dev_en_filename)
    f_fr_dev = open(dev_fr_filename)

    word_freq_en = get_word_freq(f_en, f_en_dev)
    word_freq_fr = get_word_freq(f_fr, f_fr_dev)

    f_en.close()
    f_fr.close()
    f_en_dev.close()
    f_fr_dev.close()

    return get_word_dix(word_freq_en), get_word_dix(word_freq_fr)


def reader_creator(directory, path_en, path_fr, URL, MD5, dict_en, dict_fr):
    def reader():
        if not os.path.exists(path_en) or not os.path.exists(path_fr):
            with tarfile.open(
                    paddle.v2.dataset.common.download(URL, 'wmt14', MD5)) as tf:
                tf.extractall(directory)

        f_en = open(path_en)
        f_fr = open(path_fr)
        UNK_en = dict_en['<unk>']
        UNK_fr = dict_fr['<unk>']

        for en, fr in itertools.izip(f_en, f_fr):
            src_ids = [dict_en.get(w, UNK_en) for w in en.strip().split()]
            tar_ids = [
                dict_fr.get(w, UNK_fr)
                for w in ['<s>'] + fr.strip().split() + ['<e>']
            ]

            # remove sequence whose length > 80 in training mode
            if len(src_ids) == 0 or len(tar_ids) <= 1 or len(
                    src_ids) > 80 or len(tar_ids) > 80:
                continue

            yield src_ids, tar_ids[:-1], tar_ids[1:]

        f_en.close()
        f_fr.close()

    return reader


def train(dict_en, dict_fr):
    directory = './wmt14-data'
    return reader_creator(directory, directory + '/train/train.en',
                          directory + '/train/train.fr', URL_TRAIN, MD5_TRAIN,
                          dict_en, dict_fr)


def test(dict_en, dict_fr):
    directory = './wmt14-data'
    return reader_creator(directory, directory + '/dev/ntst1213.en',
                          directory + '/dev/ntst1213.fr', URL_DEV_TEST,
                          MD5_DEV_TEST, dict_en, dict_fr)