generate_pass.cc 16.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/ir/generate_pass.h"
16
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
17 18 19 20 21 22 23

namespace paddle {
namespace framework {
namespace ir {

void InitGeneratePattern(const proto::PassDesc& pass_desc, PDPattern* pattern) {
  const proto::BlockDesc& block = pass_desc.pattern().blocks(0);
24 25 26 27 28 29 30 31 32 33
  for (const proto::VarDesc& var : block.vars()) {
    PDNode* var_pdnode = pattern->NewNode(var.name())->AsInput();
    var_pdnode->assert_is_var();
    var_pdnode->assert_more([&](Node* x) {
      if (VarDesc(var).GetShape() == x->Var()->GetShape()) {
        return true;
      }
      return false;
    });
  }
34 35 36 37 38 39 40 41 42 43
  // Traverse all operators to create subgraph.
  for (int index = 0; index < block.ops_size(); ++index) {
    const proto::OpDesc& op = block.ops(index);
    // Create a PDNode for current operator. Use the index as name to avoid
    // multiple operators with same type. Get a PDNode from pattern subgraph
    // through index in rewrite phase.
    PDNode* op_pdnode =
        pattern->NewNode(std::to_string(index))->assert_is_op(op.type());
    // Create PDNodes for inputs of current operator.
    for (const proto::OpDesc::Var& var : op.inputs()) {
44 45
      for (int n = 0; n < var.arguments_size(); ++n) {
        const std::string& argument = var.arguments(n);
46 47 48 49
        // The input may be the output of other operator.
        PDNode* var_pdnode = pattern->RetrieveNode(argument);
        if (nullptr == var_pdnode) {
          var_pdnode = pattern->NewNode(argument)->AsInput();
50
          var_pdnode->assert_is_var();
51 52 53
        } else if (var_pdnode->IsOutput()) {
          var_pdnode->AsIntermediate();
        }
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
        var_pdnode->assert_more([&](Node* x) {
          for (auto* out : x->outputs) {
            if (out->IsOp() && out->Op()->Type() == op.type()) {
              const auto& inputs = out->Op()->Inputs();
              const auto& iter = inputs.find(var.parameter());
              if (inputs.end() != iter) {
                if (iter->second.end() != std::find(iter->second.begin(),
                                                    iter->second.end(),
                                                    x->Name())) {
                  return true;
                }
              }
            }
          }
          return false;
        });
70 71 72 73 74 75 76 77 78 79
        pattern->AddEdge(var_pdnode, op_pdnode);
      }
    }
    // Create PDNodes for outputs of current operator.
    for (const proto::OpDesc::Var& var : op.outputs()) {
      for (const std::string& argument : var.arguments()) {
        // The output may be the input of other operator.
        PDNode* var_pdnode = pattern->RetrieveNode(argument);
        if (nullptr == var_pdnode) {
          var_pdnode = pattern->NewNode(argument)->AsOutput();
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
          var_pdnode->assert_is_var();
          var_pdnode->assert_more([&](Node* x) {
            for (Node* input : x->inputs) {
              if (input && input->IsOp() && input->Op() &&
                  input->Op()->Type() == op.type()) {
                const auto& outputs = input->Op()->Outputs();
                const auto& iter = outputs.find(var.parameter());
                if (outputs.end() != iter) {
                  if (iter->second.end() != std::find(iter->second.begin(),
                                                      iter->second.end(),
                                                      x->Name())) {
                    return true;
                  }
                }
              }
            }
            return false;
          });
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
        } else if (var_pdnode->IsInput()) {
          var_pdnode->AsIntermediate();
        }
        var_pdnode->assert_is_op_output(op.type());
        pattern->AddEdge(op_pdnode, var_pdnode);
      }
    }
    // Set attribute condition for current operator.
    for (const proto::OpDesc::Attr& attr : op.attrs()) {
      op_pdnode->assert_more([&](Node* x) {
        if (x && x->IsOp()) {
          OpDesc* op_desc = x->Op();
          if (op_desc->HasAttr(attr.name())) {
            return GetAttrValue(attr) == op_desc->GetAttr(attr.name());
          }
          return false;
        }
        return false;
      });
    }
  }
}

121 122 123 124 125 126 127 128 129 130 131 132 133 134
// There are some duplicate patterns.
bool IsDuplicatePattern(const GraphPatternDetector::subgraph_t& subgraph,
                        Graph* graph) {
  for (auto iter : subgraph) {
    if (nullptr == graph->RetrieveNode(iter.second->id())) {
      VLOG(3) << "Node [" << iter.second->Name()
              << "] of subgraph has been removed. So skip this optimize.";
      return true;
    }
  }
  return false;
}

GraphPatternDetector::handle_t GetGenerateDelete(
135 136
    const PDPattern& pattern, const proto::PassDesc& pass_desc) {
  GraphPatternDetector::handle_t handler = [&](
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
      const GraphPatternDetector::subgraph_t& subgraph, Graph* graph) {
    if (IsDuplicatePattern(subgraph, graph)) {
      return;
    }
    // `var_node_maps` record the mapping of variable to the pattern subgraph.
    std::map<std::string, Node*> var_node_maps;
    for (const proto::PassDesc::VarMap& var_map : pass_desc.var_maps()) {
      Node* node = subgraph.at(pattern.RetrieveNode(var_map.pattern_var()));
      const auto& iter = var_node_maps.find(var_map.replace_var());
      if (var_node_maps.end() == iter) {
        // first node is input
        var_node_maps.insert({var_map.replace_var(), node});
      } else {
        // output node
        for (Node* s_node : node->outputs) {
          iter->second->outputs.push_back(s_node);
          std::replace(s_node->inputs.begin(), s_node->inputs.end(), node,
                       iter->second);
          s_node->Op()->RenameInput(node->Name(), iter->second->Name());
        }
157 158
      }
    }
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
    // Remove nodes that are intermediate.
    std::unordered_set<const Node*> remove_nodes;
    for (const std::unique_ptr<PDNode>& pdnode : pattern.nodes()) {
      remove_nodes.emplace(subgraph.at(pdnode.get()));
    }
    for (auto iter : var_node_maps) {
      remove_nodes.erase(iter.second);
    }
    GraphSafeRemoveNodes(graph, remove_nodes);
  };
  return handler;
}

GraphPatternDetector::handle_t GetGenerateRewrite(
    const PDPattern& pattern, const proto::PassDesc& pass_desc) {
  GraphPatternDetector::handle_t handler = [&](
      const GraphPatternDetector::subgraph_t& subgraph, Graph* graph) {
    if (IsDuplicatePattern(subgraph, graph)) {
      return;
    }
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    const proto::BlockDesc& block = pass_desc.replace().blocks(0);
    // `var_node_maps` record the mapping of variable to the pattern subgraph.
    std::map<std::string, Node*> var_node_maps;
    for (const proto::PassDesc::VarMap& var_map : pass_desc.var_maps()) {
      Node* node = subgraph.at(pattern.RetrieveNode(var_map.pattern_var()));
      var_node_maps.insert({var_map.replace_var(), node});
    }
    // Traverse all operators to create subgraph.
    for (const proto::OpDesc& op : block.ops()) {
      OpDesc op_desc;
      std::vector<Node *> in_nodes, out_nodes;
      op_desc.SetType(op.type());
      // Create Nodes for inputs of current operator.
      for (const proto::OpDesc::Var& var : op.inputs()) {
        std::vector<std::string> arguments;
        for (const std::string& argument : var.arguments()) {
          // The input may be mapped on the operator of pattern subgraph.
          Node* node = nullptr;
          auto iter = var_node_maps.find(argument);
          if (var_node_maps.end() == iter) {
            VarDesc var_desc(patterns::UniqueKey(argument));
            node = graph->CreateVarNode(&var_desc);
            var_node_maps.insert({argument, node});
          } else {
            node = iter->second;
          }
          in_nodes.push_back(node);
          arguments.push_back(node->Name());
        }
        op_desc.SetInput(var.parameter(), arguments);
      }
      // Create Nodes for outputs of current operator.
      for (const proto::OpDesc::Var& var : op.outputs()) {
        std::vector<std::string> arguments;
        for (const std::string& argument : var.arguments()) {
          // The output may be mapped on the operator of pattern subgraph.
          Node* node = nullptr;
          auto iter = var_node_maps.find(argument);
          if (var_node_maps.end() == iter) {
            VarDesc var_desc(patterns::UniqueKey(argument));
            node = graph->CreateVarNode(&var_desc);
            var_node_maps.insert({argument, node});
          } else {
            node = iter->second;
          }
          out_nodes.push_back(node);
          arguments.push_back(node->Name());
        }
        op_desc.SetOutput(var.parameter(), arguments);
      }
      // Set attribute for current operator.
      for (const proto::OpDesc::Attr& attr : op.attrs()) {
        op_desc.SetAttr(attr.name(), GetAttrValue(attr));
      }
      // Create a Node for current operator.
      Node* op_node = graph->CreateOpNode(&op_desc);
      for (Node* node : in_nodes) {
        IR_NODE_LINK_TO(node, op_node);
      }
      for (Node* node : out_nodes) {
        IR_NODE_LINK_TO(op_node, node);
      }
    }
    // Remove nodes that are intermediate.
    std::unordered_set<const Node*> remove_nodes;
    for (const std::unique_ptr<PDNode>& pdnode : pattern.nodes()) {
      remove_nodes.emplace(subgraph.at(pdnode.get()));
    }
    for (auto iter : var_node_maps) {
      remove_nodes.erase(iter.second);
    }
    GraphSafeRemoveNodes(graph, remove_nodes);
  };
  return handler;
}

GeneratePass::GeneratePass(const std::string& binary_str) {
  multi_pass_desc_.ParseFromString(binary_str);
  VerifyDesc();
}

GeneratePass::GeneratePass(const proto::MultiPassDesc& multi_pass_desc)
    : multi_pass_desc_(multi_pass_desc) {
  VerifyDesc();
}

void GeneratePass::ApplyImpl(Graph* graph) const {
  for (const proto::PassDesc& pass_desc : multi_pass_desc_.pass_descs()) {
    GraphPatternDetector detector;
    InitGeneratePattern(pass_desc, detector.mutable_pattern());
269 270 271 272 273
    if (pass_desc.replace().blocks(0).ops_size() == 0) {
      detector(graph, GetGenerateDelete(detector.pattern(), pass_desc));
    } else {
      detector(graph, GetGenerateRewrite(detector.pattern(), pass_desc));
    }
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    // The rewrited graph needs to be verified. Current Pass should be skipped
    // if validation failed. Rewrite based on the original graph cannot
    // implement rollback operation.
    VerifyGraph(*graph);
  }
}

void GeneratePass::VerifyDesc() const {
  PADDLE_ENFORCE_NE(multi_pass_desc_.pass_descs_size(), 0,
                    platform::errors::InvalidArgument(
                        "Size of PassDesc should not be empty."));
  for (const proto::PassDesc& pass_desc : multi_pass_desc_.pass_descs()) {
    // Check inputs/outputs of subgraph should in `var_maps`.
    std::set<std::string> pattern_var_sets, replace_var_sets;
    for (const proto::PassDesc::VarMap& var_map : pass_desc.var_maps()) {
      pattern_var_sets.emplace(var_map.pattern_var());
      replace_var_sets.emplace(var_map.replace_var());
    }
    auto check_vars = [=](std::set<std::string>* var_sets,
                          const proto::BlockDesc& block) {
      for (const proto::OpDesc& op : block.ops()) {
        for (const proto::OpDesc::Var& var : op.outputs()) {
          for (const std::string& argument : var.arguments()) {
            var_sets->emplace(argument);
          }
        }
      }
      for (const proto::OpDesc& op : block.ops()) {
        for (const proto::OpDesc::Var& var : op.inputs()) {
          for (const std::string& argument : var.arguments()) {
            PADDLE_ENFORCE_NE(
                var_sets->find(argument), var_sets->end(),
                platform::errors::InvalidArgument(
                    "Subgraph of PassDesc has argument [%s] not in `var_maps`.",
                    argument));
          }
        }
      }
    };
    check_vars(&pattern_var_sets, pass_desc.pattern().blocks(0));
    check_vars(&replace_var_sets, pass_desc.replace().blocks(0));
  }
}

bool GeneratePass::VerifyGraph(const Graph& graph) {
  // Return true temporarily.
  return true;
}

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
namespace generate_pass {

VarHelper::VarHelper(const char* name) : name_(name), type_(Type::kInput) {}
VarHelper::VarHelper(const std::string& name, Type type)
    : name_(name), type_(type) {}

OpHelper::OpHelper(const char* type, SubgraphHelper* subgraph_helper)
    : type_(type), subgraph_helper_(subgraph_helper) {
  op_desc_ = subgraph_helper_->ProgramDesc()->mutable_blocks(0)->add_ops();
  op_desc_->set_type(type_);
}

OpHelper::Arguments::Arguments(const char* parameter,
                               const VarHelper& var_helper)
    : parameter_(parameter) {
  var_helpers_.push_back(var_helper);
}

OpHelper::Arguments::Arguments(const char* parameter,
                               std::initializer_list<VarHelper> var_helpers)
    : parameter_(parameter), var_helpers_(var_helpers) {}

OpHelper& OpHelper::operator()(const Arguments& input) {
  proto::OpDesc::Var* var = op_desc_->add_inputs();
  var->set_parameter(input.parameter_);
  for (const VarHelper& var_helper : input.var_helpers_) {
    var->add_arguments()->assign(var_helper.name_);
    if (VarHelper::Type::kInput == var_helper.type_) {
      subgraph_helper_->AddInputVar(var_helper.name_);
    }
  }
  return *this;
}

OpHelper& OpHelper::operator()(std::initializer_list<Arguments> inputs) {
  for (const auto& input : inputs) {
    operator()(input);
  }
  return *this;
}

VarHelper OpHelper::Out(const char* name) {
  std::string argument = patterns::UniqueKey(type_);
  proto::OpDesc::Var* var = op_desc_->add_outputs();
  var->set_parameter(name);
  var->add_arguments()->assign(argument);
  return VarHelper(argument, VarHelper::Type::kOutput);
}

proto::ProgramDesc* SubgraphHelper::ProgramDesc() { return &program_desc_; }

const proto::ProgramDesc& SubgraphHelper::ProgramDesc() const {
  return program_desc_;
}

const std::vector<std::string>& SubgraphHelper::InputVars() const {
  return input_vars_;
}

const std::vector<std::string>& SubgraphHelper::OutputVars() const {
  return output_vars_;
}

void SubgraphHelper::AddInputVar(const std::string& name) {
  auto iter = std::find(input_vars_.begin(), input_vars_.end(), name);
  if (input_vars_.end() == iter) {
    input_vars_.push_back(name);
  }
}

void SubgraphHelper::AddOutputVars(const VarHelper& var_helper) {
  output_vars_.push_back(var_helper.name_);
}

}  // namespace generate_pass

PassPairs::PassPairs(const SubgraphType& pattern, const SubgraphType& replace) {
  AddPassDesc(pattern, replace);
}

void PassPairs::AddPassDesc(const SubgraphType& pattern,
                            const SubgraphType& replace) {
  proto::PassDesc* pass_desc = multi_pass_desc_.add_pass_descs();
  pass_desc->mutable_pattern()->CopyFrom(pattern.ProgramDesc());
  pass_desc->mutable_replace()->CopyFrom(replace.ProgramDesc());
  PADDLE_ENFORCE_EQ(pattern.InputVars().size(), replace.InputVars().size(),
                    platform::errors::InvalidArgument(
                        "Size of lambda expression arguments is not equal "
                        "between pattern/replace subgraph."));
  for (size_t i = 0; i < pattern.InputVars().size(); i++) {
    proto::PassDesc::VarMap* var_map = pass_desc->add_var_maps();
    var_map->set_pattern_var(pattern.InputVars()[i]);
    var_map->set_replace_var(replace.InputVars()[i]);
  }
  PADDLE_ENFORCE_EQ(pattern.OutputVars().size(), replace.OutputVars().size(),
                    platform::errors::InvalidArgument(
                        "Size of lambda expression returns is not equal "
                        "between pattern/replace subgraph."));
  for (size_t i = 0; i < pattern.OutputVars().size(); i++) {
    proto::PassDesc::VarMap* var_map = pass_desc->add_var_maps();
    var_map->set_pattern_var(pattern.OutputVars()[i]);
    var_map->set_replace_var(replace.OutputVars()[i]);
  }
}

const proto::MultiPassDesc& PassPairs::MultiPassDesc() const {
  return multi_pass_desc_;
}

432 433 434
}  // namespace ir
}  // namespace framework
}  // namespace paddle